"Visual Haystacks: Answering Harder Questions About Sets of Images" (Wu, et. al)

Sanjeev Raja

September 23, 2024

Motivation

VQAv2: General Visual Reasoning

Q: What is the mustache made of? A: Bananas

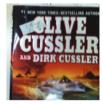
GQA: Spatial Reasoning

Q: What is the animal sitting on the sidewalk? A: Bear

TextVQA: Text-Based Reasoning

Q: What is the price of the bananas per kg? A: \$11.98

VizWiz: Unanswerable Questions



Q: What is the name of this book? A: Unanswerable

Considerable progress in **single-image VQA** with VLMs

"Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models"

Motivation

But SOTA models still struggle on Multi-Image VQA (MIQA)

Video (4000 frames): Valley-Instruct-73k + Video-Instruct 100k

t = 0s

User: Could you provide a brief summary of the employee's actions? Assistant: In the video, an employee prepares a sub. After assembling the bread, ham, pepperoni, salami, and cheese, he toasts the sub in the oven...

t = 10min

Context: 1M Tokens: 200M Examples: 173K

"WORLD MODEL ON MILLION-LENGTH VIDEO AND LANGUAGE WITH BLOCKWISE RING ATTENTION"

Needle in a Haystack (NIAH) Benchmarks

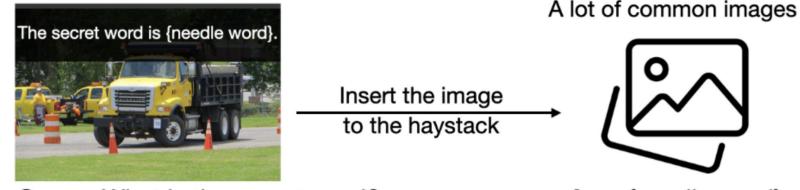
Information to Retrieve (Needle)

Test if model can correctly retrieve → the information and answer the question.

Motivation

Existing benchmarks focus excessively on **textual reasoning** and OCR capabilities

Gemini-style Challenge



Query: What is the secret word?

Ans: {needle word}.

Improving Existing Benchmarks

A good benchmark for visual long context learning should require a model to

Retrieve relevant image(s) from a vast collection
Reason visually over the retrieved image(s)

Visual Haystack Benchmark

Visual Haystack (Ours)

A lot of common images with distractors (i.e., target object)

Insert the image to the haystack

Query: For the image with <u>a truck</u>, is there <u>a dog</u>?Ans: No.Anchor object: for retrievalTarget object: for QA

Visual Haystack Benchmark

Two variants

- Single-Needle: "For the image with <anchor> object, is there <target> object?"
- Multi-Needle: ""For all images with <anchor> object, do all/any of them contain <target> object?"

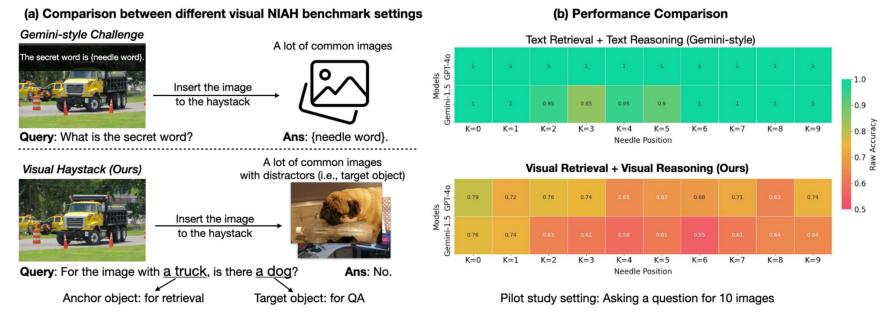
Dataset Construction

Images sourced from COCO dataset

Each haystack contains1) 1-5 needle images (with anchor)2) 1-10k negative images (no anchor, some with target)

Total size: 880 single-needle, 1k multi-needle questions

Task is Challenging for SOTA Models



Performance as a Function of Haystack Size

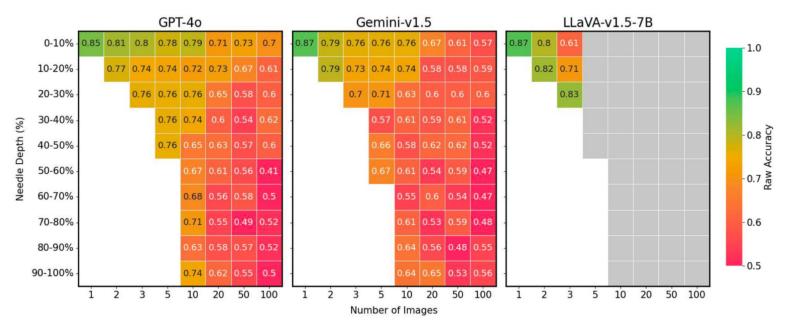
Method	Tokens/Img	N=1 (Oracle)	N=3	N=5	N=10	N=50	N=100	N=1K	N=10K
Naive									
Question Only (LLama3)	-	0.52	-	-	-	-	-	-	-
Caption-Based (LLaVA + LLama3)	576	0.79	0.67	0.69	0.68	0.59	E	E	E
LMM									
LLaVA-v1.5-7B	576	0.87	0.70	Е	Е	Е	Е	Е	Е
Claude-3 Opus	≈ 64	0.67	0.54	0.51	0.47	E	E	E	E
Gemini-1.5	≈ 258	0.87	0.73	0.68	0.64	0.58	0.59	E	E
GPT-40 (low-res)	≈ 85	0.82	0.68	0.68	0.64	0.57	0.53	E	E

Performance as a Function of Haystack Size

Takeaways

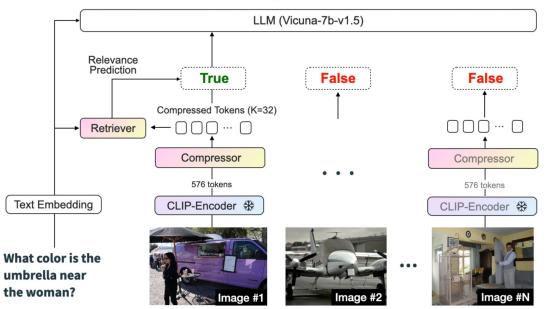
- 1) **Captioning** with LlaVA and then using LLM to answer the questions improves performance but is slow.
- 2) **Context-length** issues, particularly with open-source models

Positional Bias in Models



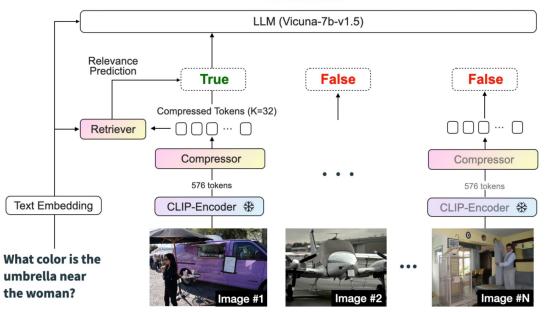
Takeaways

- 1) **SOTA** models struggle with visual reasoning over many images
- 2) **Captioning** with LlaVA and then using LLM to answer the questions improves performance but is slow.
- 3) **Context-length** issues, particularly with open-source models



A: It is black.

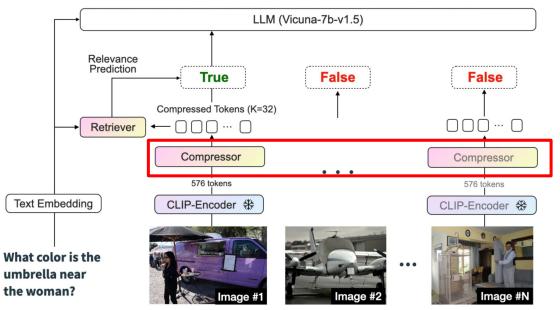
Authors proposed solution to improve performance on Visual Haystacks



A: It is black.

Authors proposed solution to improve performance on Visual Haystacks

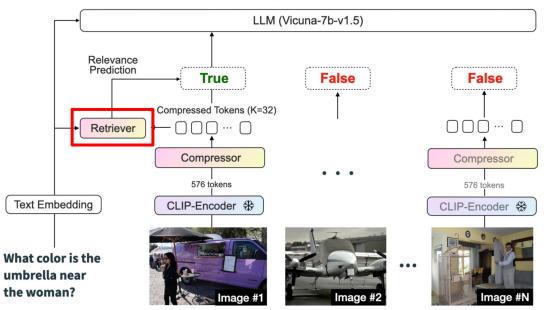
- 1. Image Compressor
- 2. Retriever (relevance predictor)
- 3. LLM



A: It is black.

1. Image Compressor

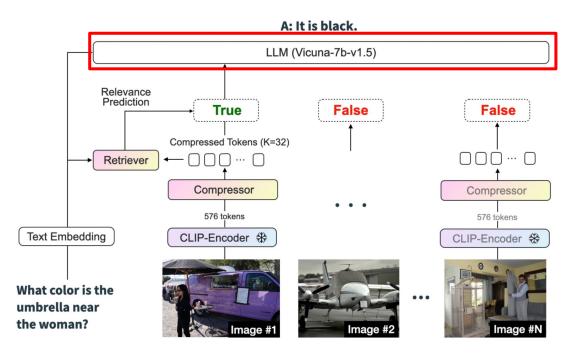
Q-former: compress from 576 to 32 tokens/image using 32 learned query vectors



A: It is black.

2. Retriever

MLP which takes in **image tokens and query** and predicts a relevance score from 0 to 1 - at inference only relevant (>0.5) images are forwarded to the LLM

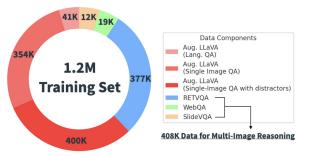


3. LLM (finetuned from LLaVA-v1.5-7B)

LLM answers the question using the text query and only the relevant image tokens.

Training procedure

- 1. **Pretraining:** train the compressor alone on ShareGPT data
- 2. Finetuning: train retriever+LLM on a dataset containing single and multi-question VQA
 - a. Adapt LlaVA single-image training data



MIRAGE: Results

Method	MIQA (RetVQA)			Single-Image QA								
	Recall	Precision	VQA Acc.	VQAv2	GQA	Vizwiz	TextVQA	POPE	MMB	MMB-CN	MM-Vet	
Qwen-VL-Chat [2]	-	-	0.0*	78.2	57.5	38.9	61.5	-	60.6	56.7	-	
LLaVA-v1.5-7B [26]	-	-	30.6	78.5	62.0	50.0	58.2	85.9	64.3	58.3	31.1	
GPT-40 [32]	-	-	34.6	-	-	-	-	-	-	-	-	
GPT-4 [33]	-	-	-	77.2	-	-	78.0	-	-	-	-	
Gemini-v1.5 [42]	-	-	32.2	73.2	-	-	73.5	-	-	-	-	
LWM [28]	-	-	-	55.8	44.8	11.6	18.8	75.2	-	-	9.6	
MI-BART [34]	-	-	76.5		-	-	-	-	-	-	-	
MIRAGE (Ours)	80.5	49.9	70.8	70.0	55.2	40.1	46.3	83.4	57.6	48.8	25.8	

MIRAGE: Results

Q-Former approach is effective at compressing tokens while retaining performance

Method	Tokens/Img	VQAv2	GQA	Vizwiz	TextVQA	POPE	MMB	MMB-CN	MM-Vet
Original LLaVA	576	78.5	62.0	50.0	58.2	85.9	64.3	58.3	31.1
3x3 Max-Pooling	64	68.7	56.2	41.3	48.5	83.0	59.2	49.3	24.3
Global Avg. Pooling	1	62.5	51.3	37.7	45.5	79.6	55.0	45.5	18.9
MIRAGE/Q-Former (Ours)	32	72.8	56.6	48.0	47.1	83.9	61.5	55.0	27.3

Table 4: Exploration of various token reduction methods. We can see that the Q-former is most efficient at reducing the number of tokens while retaining most of the general QA performance.

MIRAGE: Takeaways

- 1. Outperforms GPT-40 across all settings
- 2. Outperforms Gemini in the multi-needle setting
- 3. Underperforms in oracle (N=1) performance due to token compression
- 4. Shines at retrieval enables much longer context than is possible with GPT-40 or Gemini alone.

Conclusions/Takeaways

This paper introduces **Visual Haystacks**, a new benchmark for MIQA that requires retrieval and reasoning over large numbers of images

Many **SOTA models struggle** considerably with this task

A **RAG-based technique** is introduced to improve performance via token compression and image relevance classification

Discussion Questions

- 1. How much of MIRAGE's success is due to having MIQA training data rather than the proposed architecture? It would be interesting to see how this architecture performs without being fine-tuned on the MIQA datasets, which could be a fairer comparison.
- 2. After retrieval in what order are the images provided to the LMM? Will sorting the images based on the relevance scores (in ascending order due to LLaVA-1.5-7B positional bias) improve the results?
- 3. Visual haystack is still a synthetic benchmark. Are there other ways to obtain non-synthetic long-context data with questions?
- 4. Is it harsh to say that MIRAGE doesn't really solve the long-context reasoning problem, but essentially converts it to a short-context problem via a preprocessing step? What if many/most images are relevant to the query? In that case, how can we more fundamentally address the limitations of VLMs in learning over long contexts?

Thanks!

Multi-Needle Performance

Method		Oracle	N=5	N=10	N=50	N=100	N=1K	N=10K
Naive	Question Only (LLama3)	0.48	-	-	-	-	-	-
	Caption-Based (LLaVA + LLama3)	0.70	0.70	0.66	0.56	E	E	E
LMM	Claude-3 Opus	0.55	0.49	0.48	E	E	E	E
	Gemini-1.5	0.56	0.51	0.54	0.50	0.52	E	E
	GPT-40 (low-res)	0.71	0.65	0.63	0.49	0.52	E	E
RAG-based	MIRAGE (Ours)	0.57	0.56	0.54	0.51	0.50	0.48	0.49

Retriever Ablations

