VideoLlama 2

Seun Eisape Vision & Language Seminar

VideoLlama 2

Architecture

Spatial-Temporal Convolution Connector

- Convolutions keep some notion of space and time within and across frames
 - They also reduce number of tokens needed across multiple frames
- RegStage "complements the information loss caused by the spatial-temporal downsampling"

Vision-Language "Branch"

Vision-Language "Branch" Training

Pretraining

- Minimize Cross-Entropy Loss of Text Tokens

Modality	Dataset	Original	Used	Ratio%
	Panda-70M <u>(Chen et al., 2024b)</u>	70M	2.8M	4%
Video-Text	WebVid-10M (Bain et al., 2021)	10M	4M	40%
	VIDAL-10M (Zhu et al., 2023a)	10M	2.8M	28%
	InternVid-10M (Wang et al., 2023b)	10M	650K	6.5%
Image Text	CC-3M (Changpinyo et al., 2021)	3M	5 9 5 K	19.8%
intage-text	DCI <u>(Urbanek et al., 2023)</u>	7.8K	7.8K	100%
Vision-Language	Total	103M	12.2M	11.8%

Multitask finetuning

- Video & Image Captioning
- Video & Image Classification
- Video & Image QA

Modality	Task	# Samples	Dataset
	Captioning	23K	VideoChat, In-house data
	Classification	79K	Kinetics-710, SthSthv2
	VQA	161K	NExTQA, CLEVRER, EgoQA, Tgif, WebVidQA,
Video-Text		101K	RealworldQA, Hm3d
	Instruction	22EK	Valley, VideoChatGPT, VideoChat, VTimeLLM,
	mstruction	223 K	VideoChat2
	Captioning	82K	ShareGPT4V
Image-Text	VQA	198K	LLaVA
	Instruction	466K	LLaVA

Audio-Language "Branch"

Audio-Language "Branch"

Pretraining

 Minimize next token (text) prediction loss

Multitask finetuning

- QA
- Captioning
- Sound Event Classification

Multi-stage	# Samples	Data Sources
Pre-training	400K	WavCaps
		ClothoAQA, WavCaps, AudioCaps, Clotho,
Instruction Tuning	702K	MusicCaps, VGGSound, UrbanSound8K,
		ESC50, TUT2017, VocalSound

Audio-Video Joint Training

Audio-Video Joint Training

		Tasks:
Finetune on Aligned Audio 8	video	Audio Visual QAAudio Visual Classification
Audio-Video Joint Training	692K	AVQA, AVQA-music, AVSD, VGGSound, VideoInsturct-100K, WebVid

Opened Ended Video QA

Model	# Eramas	MSVD	ActivityNet	Video-ChatGPT (Score)				
	# Flames	(Acc./Score)	(Acc./Score)	Correctness	Detail	Context	Temporal	Consistency
		Pı	roprietary Mode	els				
Gemini 1.0 Pro	-	-	49.8/-*	-	-	-	-	-
Gemini 1.0 Ultra	12	121	5 2.2/-[♥]	-	-	-	2	-
Gemini 1.5 Pro	-	-	56.7/-*	-	-	-	-	-
GPT4-V		1.7	59.5/-	4.09	3.88	4.37	3.94	4.02
GPT4-O	-	-	61.9/-	-	-	-	-	-
		Op	en-Source Mod	lels				
VideoLLaMA (7B)	8	51.6/2.5	12.4/1.1	1.96	2.18	2.16	1.82	1.79
Video-ChatGPT (7B)	8	64.9/3.3	35.2/2.7	2.50	2.57	2.69	2.16	2.20
VideoChat (7B)	8	56.3/2.8	26.5/2.2	2.23	2.50	2.53	1.94	2.24
Chat-UniVi (7B)	8	65.0/3.6	46.1/3.3	2.89	2.91	3.46	2.89	2.81
LLaMA-VID (7B)	1 fps	69.7/3.7	47.4/3.3	2.96	3.00	3.53	2.46	2.51
Video-LLaVA (7B)	8	70.7/3.9	45.3/3.3 [♥]	2.87	2.94	3.44	2.4 5	2. 51
VideoChat2 (7B)	16	70.0/3.9	49.1/3.3	3.02	2.88	3.51	2.66	2.81
LLaVA-NeXT-Video (7B)	32	67.8/3.5 [•]	53.5/3.2	3.39	3.29*	3.92	2.60	3.12
VideoLLaMA 2 (7B)	8	71.7/3.9	49.9/3.3	3.09	3.09	3.68	2.63	3.25
VideoLLaMA 2 (7B)	16	70.9/3.8	50.2/3.3	3.16	3.08	3.69	2.56	3.14
VideoLLaMA 2 (8x7B)	8	70.5/3.8	50.3/3.4	3.08	3.11	3.64	2.67	3.26

Multiple Choice Video QA

			MC-VQ	VC			
Model	# Frames	EgoSchema	Perception-Test	MVBench	VideoMME	MSVC	(Score)
		(Acc.)	(Acc.)	(Acc.)	(Acc.)	correctness	detailedness
		Pı	roprietary Models				
Gemini 1.0 Pro (Google, 2023)		55. 7[®]	51.1	12	<u>2</u> 1	<u>12</u>	1 <u>4</u>
Gemini 1.0 Ultra (Google, 2023)	-	61.5	5 4.7	-	-	-	÷
Gemini 1.5 Flash (Google, 2024)	-	÷	-	-	-	3.46	3.24
Gemini 1.5 Pro (Google, 2024)	-	63.2		-	75.7^{\diamond}	3.67 [•]	3.52
GPT4-V (OpenAI, 2023b)	-	55.6 [♥]	-	43.7 [°]	60.7^{\diamond}	2.70 [•]	2.76
GPT4-O (OpenAI, 2024)	-	72.2	3 2	-	66.2 [¢]	<u> </u>	2
Reka-Flash (Reka, 2024)	-	-	56.4*	-	<u>u</u>	2	2
Reka-Core (Reka, 2024)	-	-	59.3 [*]	-	-	2.61 [•]	2.73 [•]
		Op	ven-source Models				
LLaMA-VID (7B)	1 fps	38 .5	44.6 [•]	41.9	25.9 [•]	1.84	2.11
Video-LLaVA (7B)	8	38.4 [•]	44.3 [•]	41.0	40.4^{\diamond}	1.85 [•]	2.05
VideoChat2 (7B)	16	42.2 [•]	47.3 [•]	51.1	33.7 [¢]	2.01 [•]	2.10
LLaVA-NeXT-Video (7B)	32	43.9 [•]	48.8 [•]	46 .5	33.7 [•]	2.40 [•]	2.52 [•]
VideoLLaMA 2 (7B)	8	50.5	49.6	53.4	44.0	2.57	2.61
VideoLLaMA 2 (7B)	16	51.7	51.4	54.6	46.6	2.53	2.59
VideoLLaMA 2 (8x7B)	8	53.3	52.2	53.9	48.4	2.53	2.56

Open Ended Audio Video QA

Method	# Pairs	MUSIC-QA	AVSD	AVSSD
PandaGPT (13B)	128M	33.7	26.1	32.7
Macaw-LLM (7B)	0.3M	31.8	34.3	36.1
VideoLLaMA (7B)	2.8M	36.6	36.7	40.8
X-InstructBLIP (13B)	32M	44.5	-	-
AV-LLM (13B)	1.6M	45.2	52.6	47.6
OneLLM (7B)	1007M	47.6	-	-
AVicuna (7B)	1.1M	49.6	53.1	1.50
CREMA (4B)	-	52.6(75.6)	-	.=
VideoLLaMA 2 (7B)	1.8M	73.6	53.3	67.9

"If you were to design a suite of analyses similar to the Idefics2 or Prismatic VLM ablations but for Video-LLMs, what design decisions would you ablate and why?"

- Stephanie Fu

"In the real-world, video tasks may involve much longer time scales than typically used in the benchmarks. How might the STC connector need to be adapted or extended to handle very long videos?"

- Anish Kachinthaya

Discussion continued

"The paper appears to imply that the architectural design of the STC component played an important role in yielding the benchmark improvements presented. Is this a fair comparison? What about the role of data – if training data choices are no longer standardized, how can we reliably differentiate the impact of different architectural decisions across models?"

- Rudy Corona

"Maybe normalize performance on a task by number of samples seen during training"

- Seun (comment)

"What is RegStage?" *happens before and after convolution to 'complement information loss'

- Seun Eisape

Discussion Continued

"Given that the STC module improves temporal modelling, would it make sense to have a model that does something similar to fuse the audio and video modalities? They don't explore speech tasks or ASR tasks which are highly dependent on the ability to model low level video and audio features in a temporal manner."

- Giscard Biamby

Any questions that were not answered?