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Overview of Text-to-Video Generation Models

e Text-to-video models generate video sequences based on natural language prompts.
e Two prominent families of models: Diffusion Models and Autoregressive Models.

e Key challenges: temporal consistency, computational complexity, and semantic alighment.



Challenge 1: Temporal Consistency

Generating videos is not just generating images.



Challenge 2: High Computational Complexity

For a 12 fps video, 24 images are just 2 seconds.

60 seconds => 720 frames



Challenge 3: Lack of High-quality Datasets
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Recent datasets are of higher quality
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Diffusion Models for Video Generation

Inspired by denoising diffusion probabilistic models.
Gradually add noise to the video frames and learn to reverse the process.
Notably, many models for video generation are re-designed image generation models.

Example models: Video Diffusion Models (VDM), Imagen Video, and Align Your Latents



Video Diffusion Models (VDM)

An attempt of spatial -> spatiotemporal generation

e A temporal extension of image-based diffusion models.
e Uses 3D CNNs to model temporal dynamics.
e Spatial convs are used to process the space

e Temporal attention layers are used to sync across the time

No 3D conv => high efficiency

Temporal attention => temporal consistency




Some results from VDM
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Imagen Video — A Diffusion Model with Hierarchical Generation
Imagen -> Imagen Video: spatial upsampling -> spatiotemporal upsampling

e Hierarchical approach: generates lower-resolution frames first, then refines them.
e Improves coherence across frames with a cascade of diffusion models.

e Specialized for high-resolution video synthesis.
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Some results from Imagen Video
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Align your Latents — Improving Video Quality with Latent Diffusion

Stable Diffusion -> Stable Diffusion for Videos

e Ensures temporal coherence by aligning latent representations across frames.

e Alignment is achieved through a video-aware discriminator.
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There are so many works in this field

e Phenaki— Enabling Long Video Generation

e Emu Video — Factorizing Text-to-Video Generation into image generation and image-conditioned video
generation

e \VideoCrafter2 — Addressing Data Limitations in Video Diffusion Models

e MagicVideo — Efficient Video Generation With Latent Diffusion Models

Shutterstock
watermark from the
examples generated
by MagicVideo




Emu Video and VideoCrafter?2

e Ren’s presentation



Sora — OpenAl’s Text-to-Video Generation Model

Here is what we know.

Capable of generating high-fidelity videos up to one minute in length.
Trained on diverse datasets with varying durations, resolutions, and aspect ratios.
Utilizes a transformer architecture operating on spacetime patches of video and image latent codes.

Aims to serve as a general-purpose simulator of the physical world.
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MovieGen — Meta Al's Media Foundation Framework

Alberto’s Presentation




Recent Advancements: Mochi 1

An open-weights text-to-video generator

e |t uses a 10-billion-parameter diffusion model built on the novel Asymmetric Diffusion Transformer
(AsymmmDiT) architecture




Autoregressive Models for Video Generation

e Diffusion models generate all the frames together.

e Autoregressive models predict video frames one by one, conditioned on previous frames.

e Common issue: propagation of errors (i.e., compounding errors).



VideoGPT — Frame-wise Autoregressive Model with Transformers

e Uses Vector Quantized-Variational
Autoencoders (VQ-VAE) to encode
video frames.

R 4 e Employs a transformer-based

decoder to predict frame sequences.




VideoPoet — Large Language Model for Zero-Shot Video Generation
/eeshan’s Presentation

e Introduces a large language model (LLM) for zero-shot video generation.
e Learns temporal dynamics without requiring large labeled datasets.

e Uses text embeddings for video synthesis through transformer decoders.




Diffusion vs. Autoregressive Models — Key Differences

e Diffusion Models: Better for high-resolution and long-form video generation, but computationally
Intensive.

e Autoregressive Models: Faster for short video generation but prone to error propagation.

e Temporal Consistency: Diffusion models handle it better through sequential denoising.



Benchmarking text-to-video generation models

e Importance of Evaluation: Assessing text-to-video (T2V) models is crucial for understanding their
performance and guiding future improvements.

e Challenges: Evaluating T2V models involves multiple dimensions, including visual quality, temporal
dynamics, and alignment with textual prompts.

e Two important metrics for text-to-video generation are FVD and CLIPScore.

e Both metrics have their own issues.



Fréchet Video Distance (FVD)

e FVD is similar to FID, except that it’s calculated on video features.

e FVD is the Fréchet Distance between the feature distributions of real and generated videos.



Issues with FVD

e Non-Gaussian Feature Space: Assumes a Gaussian distribution in the Inflated 3D Convnet (I3D) feature
space, which may not hold true, leading to inaccurate evaluations.

e Temporal Insensitivity: 13D features may not effectively capture temporal distortions, undermining the
assessment of motion quality.

e Sample Size Requirements: Reliable estimation with FVD often necessitates impractically large sample
sizes.



CLIPScore and its issues

e CLIPScore computs the cosine similarity between the image and caption embeddings produced by CLIP.

e |t has its own issues:
e |t often struggles to identify fine-grained details in generation.
e |tisinsensitive to certain linguistic aspects, such as negation.

e The fact that existing metrics are not good enough for evaluation is the reason for text-to-video
benchmarks.



VBench — Comprehensive Benchmark Suite for Video Generative Models

Kazusato’s Presentation

e A benchmarking suite for evaluating video generative models.

e Covers quality, temporal consistency, diversity, and realism metrics.

e Includes both objective measures and human evaluations
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T2V-CompBench: A Comprehensive Benchmark for Compositional Text-to-video

Generation

e A work from the same team that proposed T2I-CompBench

e Benchmarking several aspects by leveraging models such as LLaVA

(a) Prompt Suite

(b) Evaluation Metrics
MLLM-based evaluation metrics
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Challenges and Future Research in Text-to-Video

e Computational Bottlenecks: Both diffusion and autoregressive models require immense computational
power.

e Scalability: Need for better models that can handle longer videos with fewer resources.
e Semantic Drift: Ensuring consistent alignment with input prompts over time.

e Model Evaluation: Lack of standardized metrics for evaluating video quality.



Conclusion — Where Text-to-Video Generation is Heading

LLM integration will drive more innovative zero-shot models like VideoPoet.
Factorization strategies (e.g., Emu Video) help simplify generation tasks.
Synthetic data augmentation (VideoCrafter2) addresses data challenges.

Large-scale training is needed for content coherence and visual quality, as shown by the high-quality
results from MovieGen and Sora.

Standardized evaluation metrics (VBench) are still needed for fair evaluation.



Discussions

e What should PhD students do in response to the aggressive scaling in text-to-video model training?

e |sscaling all you need for high-quality video generation?
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