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- Existing working systems are not 
end to end reinforcement learning 
/ imitation learning

- 2 key ideas 
- Abstraction
- Hierarchy

Last week: how are robot controlled
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- Abstraction 
- Lowest level: joint position (torque PD Control) 
- Middle: cartesian space control (jacobian + PID 

control) / model-predictive control 
- Upper: motion planning (RRT, PRM) / SLAM
- Beyond: task planning (where to grasp? Ordering of 

task? affordance?) / where to go? 

Last week: how are robot controlled



- Modularity
- Different modules work together to solve a problem 
- “If we make each module work perfectly, then a problem 

will be solved!” 
- In addition to hierarchical modules, you can expand 

horizontally! 
- Analyze failure modes and catch them individually
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Last week: how are robot controlled



Summary from last week
- Advantages: 

- “If each part works, then as whole it should work!” *after some integration 
tests

- Interpretability!
- We FULLY know the robot’s dynamics! 

- Disadvantages:
- Slow / high latency: planning / scouting out a scene takes 

sec/minutes. The robot needs to move now!
- Many of them are not reactive: take a capture of the scene 

then the robot moves (what if the object is a moving target?)
- We as grad students needs to implement each of the module! 
- Data labelers (amazon turk, scale ai) is more scalable than grad 

students!
- But, the framework as whole does not scale with data

- Each part may still scale with increasing data
- NOT align with the bitter lesson [1]! Too much inductive bias!
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[1] Sutton, R. (2019). The bitter lesson. Incomplete Ideas (blog), 13(1), 38.



The bitter lesson

The bitter lesson is based on the historical observations that 1) AI researchers 
have often tried to build knowledge into their agents (abstraction and 
modularity), 2) this always helps in the short term, and is personally satisfying to 
the researcher, but 3) in the long run it plateaus and even inhibits further 
progress (each module becomes increasing hard to improve/fix), and 4) 
breakthrough progress eventually arrives by an opposing approach based on 
scaling computation by search and learning (robot learning?). The eventual 
success is tinged with bitterness, and often incompletely digested, because it is 
success over a favored, human-centric approach.

One thing that should be learned from the bitter lesson is the great power of 
general purpose methods, of methods that continue to scale with increased 
computation even as the available computation becomes very great. The 
two methods that seem to scale arbitrarily in this way are search and learning.
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How can we move away from abstraction?

- Predict one of 
- Lowest level: joint torque (>1000 Hz)
- Lower level: joint position (+ PD Control with torque) 

(10-200 Hz)
- Middle: cartesian space control (jacobian + PID 

control) (ideally > 10 Hz)
- Upper: motion planning (RRT, PRM) (*a few seconds)
- Beyond: task planning (where to grasp? Ordering of 

task? affordance?) / where to go? (this can take 
arbitrarily long)
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- Upper: motion planning (RRT, PRM) (*a few seconds)
- Just make it learning based / optimize it better! 
- Still not reactive though unless you keep planning!

How can we move away from abstraction?

8
Huang, H., Sundaralingam, B., Mousavian, A., Murali, A., Goldberg, K., & Fox, D. DiffusionSeeder: Seeding Motion Optimization with Diffusion for Rapid Motion Planning. In 8th 
Annual Conference on Robot Learning.



How can we move away from abstraction?

- Predict one of 
- Lowest level: joint torque (2000 Hz)
- Lower level: joint position (+ PD Control with torque) 
- Middle: cartesian space control (jacobian + PID 

control) / model-predictive control 
- Upper: motion planning (RRT, PRM) / SLAM
- Beyond: task planning (where to grasp? Ordering of 

task? affordance?) / where to go? 
- Let’s remove motion planning and task planning to 

make the policy more reactive and lower latency
- Control from vision (+ proprioception) 

9
[1] Sutton, R. (2019). The bitter lesson. Incomplete Ideas (blog), 13(1), 38.



I. Imitation learning

Let’s ignore language for now. How to get from 
vision to action?
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ALVIN
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Input: image 

Output: steer 
angle

Fully connected 
network

Pomerleau, D. A. (1988). Alvinn: An autonomous land vehicle in a neural network. Advances in neural information processing systems, 1.



What are some problems
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Demonstrations are non-markovian
Demonstrations are multimodal

Levine, Sergey. Deep RL Lecture 2. 



Regressing Continuous Action
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*Problem with L1 / L2 regression:
- Assumes unimodal gaussian 

prior 
- Mode covering
- Gonna hit the tree!
- Naive solution: mixture of 

gaussians



Implicit BC

14Florence, P., Lynch, C., Zeng, A., Ramirez, O. A., Wahid, A., Downs, L., ... & Tompson, J. (2022, January). Implicit behavioral cloning. In 
Conference on Robot Learning (pp. 158-168). PMLR.



Implicit BC

15Florence, P., Lynch, C., Zeng, A., Ramirez, O. A., Wahid, A., Downs, L., ... & Tompson, J. (2022, January). Implicit behavioral cloning. In 
Conference on Robot Learning (pp. 158-168). PMLR.

Inference time: solve for 
argmin with sample 
based or gradient based 
methods



Diffusion Policy

16Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burchfiel, B., & Song, S. (2023). Diffusion policy: Visuomotor policy learning via action diffusion. arXiv 
preprint arXiv:2303.04137.



Diffusion Policy

17Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burchfiel, B., & Song, S. (2023). Diffusion policy: Visuomotor policy learning via action diffusion. arXiv 
preprint arXiv:2303.04137.

https://docs.google.com/file/d/1dlCF0EbheDDYYPXcjK45PWOK2TAzYeQT/preview
https://docs.google.com/file/d/1XxLH02y8HvicUyYz8gfjiZp7Yn-okLxT/preview


What’s an efficient training scheme? 
(pre-training?) 

- Efficient multi-task learning -> reduce cost of transfer 
learning / task adaptation

- Visual Pre-training: 
- MAE -> the MVP

- Sequence pre-training:
- BERT (efficient fine-tuning) -> RPT
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Masked Visual Pre-training for Motor 
Control

19
Radosavovic, I., Xiao, T., James, S., Abbeel, P., Malik, J., & Darrell, T. (2023, March). Real-world robot learning with masked 
visual pre-training. In Conference on Robot Learning (pp. 416-426). PMLR.



Masked Visual Pre-training for Motor 
Control

20
Radosavovic, I., Xiao, T., James, S., Abbeel, P., Malik, J., & Darrell, T. (2023, March). Real-world robot learning with masked 
visual pre-training. In Conference on Robot Learning (pp. 416-426). PMLR.



What’s an efficient training scheme? 
(pre-training?) 

- Efficient multi-task learning -> reduce cost of transfer 
learning / task adaptation

- Visual Pre-training: 
- MAE -> the MVP

- Sequence pre-training:
- BERT (efficient fine-tuning) -> RPT
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Robot Pretrained Transformer

22
Radosavovic, I., Shi, B., Fu, L., Goldberg, K., Darrell, T., & Malik, J. (2023, December). Robot learning with sensorimotor 
pre-training. In Conference on Robot Learning (pp. 683-693). PMLR.



Robot Pretrained Transformer

23
Radosavovic, I., Shi, B., Fu, L., Goldberg, K., Darrell, T., & Malik, J. (2023, December). Robot learning with sensorimotor 
pre-training. In Conference on Robot Learning (pp. 683-693). PMLR.

Task Specific Fine-tuning

Task Specific Linear Probe

https://docs.google.com/file/d/1GoV8E1-iqX59I_MtEJIgm4KufzhohQfN/preview


Robot Pretrained Transformer

24
Radosavovic, I., Shi, B., Fu, L., Goldberg, K., Darrell, T., & Malik, J. (2023, December). Robot learning with sensorimotor 
pre-training. In Conference on Robot Learning (pp. 683-693). PMLR.



Similarly, we can raise to 3D representations

Or implicit 3D (multiview?) 

25



263D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations: Ze et al. 2024

Is 3D Necessary?: A case study in manipulation
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Lifting to 3D

3D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations: Ze et al. 2024

Is 3D Necessary?: A case study in manipulation
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Prediction over 
3D tokens.

Prediction over 
1D pooled 

tokens.

3D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations: Ze et al. 2024

Is 3D Necessary?: A case study in manipulation



293D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations: Ze et al. 2024

Is 3D Necessary?: A case study in manipulation
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3D Diffuser Actor significantly 
better than 3D Diffusion 

Policy!

3D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations: Ze et al. 2024

Is 3D Necessary?: A case study in manipulation
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3D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024

Ablations show that 3D 
encoding is critical for 

performance.

Is 3D Necessary?: A case study in manipulation
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Language Grounding with 3D Objects : Thomason et al. 2021

Is 3D Necessary?: A case study in grounding
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Language Grounding with 3D Objects : Thomason et al. 2021

Is 3D Necessary?: A case study in grounding

Perception is active, 

Need to rotate object to perceive 
information necessary to ground 

expression. 
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Language Grounding with 3D Objects : Thomason et al. 2021

Is 3D Necessary?: A case study in grounding
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Language Grounding with 3D Objects : Thomason et al. 2021

Is 3D Necessary?: A case study in grounding

Assumptions revisited:

Active perception assumed 
solved, agent provided with 

multi-view image renderings of 
object. 
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Language Grounding with 3D Objects : Thomason et al. 2021

Is 3D Necessary?: A case study in grounding

CLIP embed multi-view 
images and text query.
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Language Grounding with 3D Objects : Thomason et al. 2021

Is 3D Necessary?: A case study in grounding

Pool view CLIP 
embeddings, concatenate 
each objects’ pooled views 

with query embedding
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Language Grounding with 3D Objects : Thomason et al. 2021

Is 3D Necessary?: A case study in grounding

Independently score each 
objects’ affinity to text query 

with MLP.
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Language Grounding with 3D Objects : Thomason et al. 2021

Is 3D Necessary?: A case study in grounding

Fares okay against 
human performance



40
Voxel-informed Language Grounding: Corona et al. 2022

Is 3D Necessary?: A case study in grounding

Idea: Use explicit 3D 
representation as 

anchor for grounding.
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Voxel-informed Language Grounding: Corona et al. 2022

Is 3D Necessary?: A case study in grounding

Operationalized by 
appending features from 
3D reconstruction model 

to scoring function.
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Voxel-informed Language Grounding: Corona et al. 2022

Is 3D Necessary?: A case study in grounding

Improves performance over 
the standard model!

Did 3D intrinsically help?
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Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024

Is 3D Necessary?: A case study in grounding
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Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024

2 key structures of prior work:

1. Candidates scored 
independently. 

2. Multi-view images aggregated 
before passing to scoring 
function.

Does this make sense for 
comparative referential 
expressions?

Is 3D Necessary?: A case study in grounding
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Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024

Alternative formulation, using 
two types of context:

1. Candidates scored jointly. 

2. All image embeddings 
passed to scoring 
function.

Is 3D Necessary?: A case study in grounding
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Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024

Is 3D Necessary?: A case study in grounding

Does even better, without 
requiring 3D!
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Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024

Is 3D Necessary?: A case study in grounding
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Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024

Is 3D Necessary?: A case study in grounding

Ablation takeaways:
 

● Both contexts critical for 
performance gain.

 
● Transformer provides no 

significant gains over 
MLP without context 

addition.
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Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024

Is 3D Necessary?: A case study in grounding

Implication: 3D likely helped 
before because it provided 

information that was lost through 
multi-view aggregation.
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Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024

Why did 3D help one and not the other?
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Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024

Why did 3D help one and not the other?

Active perception, i.e. manipulation 
of object was abstracted away from 

grounding task! 

Grounding submodule did not need 
3D, but end-to-end pipeline likely 

would!
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Perceiver-Actor: A Multi-Task Transformer for Robotic Manipulation: Shridhar et al. 2022

Gallery of 3D Drawbacks
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Perceiver-Actor: A Multi-Task Transformer for Robotic Manipulation: Shridhar et al. 2022

3D voxel map useful for task, but 
can quickly grow intractable!

Paper uses 1003  = 1M voxels!

Gallery of 3D Drawbacks
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Perceiver-Actor: A Multi-Task Transformer for Robotic Manipulation: Shridhar et al. 2022

Uses PercieverIO to subsample and 
reduce complexity. 

Gallery of 3D Drawbacks
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Perceiver-Actor: A Multi-Task Transformer for Robotic Manipulation: Shridhar et al. 2022

Like in video, implies tradeoff between 
resolution/coverage and tractability.

 Can be bad if task requires both fine motor 
movements and large spatial coverage!

Gallery of 3D Drawbacks



563D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
Evo-NeRF: Evolving NeRF for Sequential Robot Grasping of Transparent Objects: (Kerr et al. 2022)

Gallery of 3D Drawbacks



573D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
Evo-NeRF: Evolving NeRF for Sequential Robot Grasping of Transparent Objects: (Kerr et al. 2022)

Gallery of 3D Drawbacks

Require calibrated camera information.

OK in robotics domains, but can’t 
leverage web-scale data! 
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Gallery of 3D Drawbacks

ShapeNet: An Information-Rich 3D Model Repository: Chang et al. 2015
Objaverse-XL: A Universe of 10M+ 3D Objects: Deitke et al. 2023
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50K 3D Objects 10M 3D Objects

Gallery of 3D Drawbacks

ShapeNet: An Information-Rich 3D Model Repository: Chang et al. 2015
Objaverse-XL: A Universe of 10M+ 3D Objects: Deitke et al. 2023
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Gallery of 3D Drawbacks

Scalable 3D Captioning with Pretrained Models: Luo et al. 2023
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1M text-object pairs

Gallery of 3D Drawbacks

Scalable 3D Captioning with Pretrained Models: Luo et al. 2023
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In contrast, WebLI dataset 
contains 10B+ images. 

And tens of billions of 
image-text pairs.

Gallery of 3D Drawbacks

Scalable 3D Captioning with Pretrained Models: Luo et al. 2023



II. Towards Multi-Task Learning (Aka 
Robot Foundation Models)

- We have covered many algorithms for learning a 
single task. 

- What’s the challenge of real multi-task learning?
- Multi-task conditioning?

- Goal, language, or (?) 

63



Challenges of Multi-task Learning

Definition: 

Given a task condition, the policy performs the correct task 
amongst many training tasks. 

64



Challenges of Multi-task Learning

It is easy to overfit to a certain task, especially in simulation!

Why? There’s just one object. No need to generalize!

65James, S., Ma, Z., Arrojo, D. R., & Davison, A. J. (2020). Rlbench: The robot learning benchmark & learning environment. IEEE 
Robotics and Automation Letters, 5(2), 3019-3026.



II. Towards Multi-Task Learning (Aka 
Robot Foundation Models)

- We have covered many algorithms for learning a 
single task. 

- What’s the challenge of real multi-task learning?
- Multi-task conditioning?

- Goal, language, or (?) 

66



Goal Condition

Goal observation condition: sparsity

1. Goal relabeling to improve data utility:
a. Hindsight Experience Replay 

2. Imagine subgoals for task completion
a. SuSIE 

67



Hindsight Experience 
Replay

68Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., ... & Zaremba, W. (2017). Hindsight experience replay. Advances in neural 
information processing systems, 30.

Usable for both RL and BC



SUbgoal Synthesis via Image Editing (SuSIE)

69Black, K., Nakamoto, M., Atreya, P., Walke, H., Finn, C., Kumar, A., & Levine, S. (2023). Zero-shot robotic manipulation with pretrained image-editing diffusion 
models. arXiv preprint arXiv:2310.10639.

Finetune InstructPix2Pix

“Given language instruction 
and current observation, 
predict some image that is k 
steps away.”



SUbgoal Synthesis via Image Editing (SuSIE)

70Black, K., Nakamoto, M., Atreya, P., Walke, H., Finn, C., Kumar, A., & Levine, S. (2023). Zero-shot robotic manipulation with pretrained image-editing diffusion 
models. arXiv preprint arXiv:2310.10639.



Language Condition

Two line of thoughts

1. Fuse language + vision, policy learns from the shared 
latent
a. RT-1
b. Early Fusion VLA

2. Multi-modal sequence modeling / VQA:
a. Gato
b. RT-2
c. OpenVLA
d. LLarva

3. Both Language + Goal
a. Octo

71



Robot Transformer

72Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale." 
arXiv preprint arXiv:2212.06817 (2022).

https://docs.google.com/file/d/1LATB4Oc01HWRUq2CWKBDjTCbM8fmJe0c/preview


Robot Transformer

73Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale." 
arXiv preprint arXiv:2212.06817 (2022).

Not tokenized images (Extracted by EfficientNetB3)



Early Fusion VLA

74

Do you really have to relearn 
language vision alignment 
with FiLM? 
CLIP already knows that!



Early Fusion VLA
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Do you really have to relearn 
language vision alignment 
with FiLM? 
CLIP already knows that!



OpenVLA

76

Action generation as VQA!
Use Prismatic VLA, but finetune to generate action.

Kim, M. J., Pertsch, K., Karamcheti, S., Xiao, T., Balakrishna, A., Nair, S., ... & Finn, C. (2024). OpenVLA: An Open-Source 
Vision-Language-Action Model. arXiv preprint arXiv:2406.09246.



OpenVLA
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Advantages and disadvantages of the two 
approaches
1. Fuse language + vision first, policy learns from the shared latent

a. Advantage: 
i. if done correctly, you can use the power of pre-trained VLM
ii. Can be super fast and lightweight

b. Disadvantages: 
i. no multimodal reasoning capability, as it only predicts action -> 

needs an alternative model to perform planning
2. Multi-modal sequence modeling / VQA:

a. Advantages:
i. Multi-modal reasoning capability, potentially can perform 

planning along with action generation 
b. Disadvantages:

i. Slow! To have stronger planning capability -> bigger model -> 
slower inference / cloud compute needed (increase latency)
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Why do we not want to use language / goal observations?
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80



81







In-context robot transformer
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In-context robot transformer

85



In-context robot transformer
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In-context robot transformer
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https://docs.google.com/file/d/1DSRDDSv08qOnfEyiwkXu_i1_6xiCugpg/preview


III. Limitations of End2End and Future 
works

88

- Advantages
- Low latency, close loop control 
- Easy to teach a single task 

- Disadvantages
- Task has become a lot simpler (unless we consider single task learning, 

with a lot of data)
- If dataset is formulated incorrectly, may suffer from overfitting and 

doesn’t generalize
- Control is less precise, not interpretable 
- Where is the data? 

- Find VC, pitch them data collection
- Scaling in simulation
- Learning from human video data

- What are the basis vectors of human / robot motion? How to compose 
them?



End
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Why robotics?

Rapidly growing market The world is full of autonomous systems!
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Why robotics?
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Why robotics?

http://www.youtube.com/watch?v=-e1_QhJ1EhQ&t=53


Moravec's paradox

- Hans Moravec, Rodney Brooks, Marvin Minsky:
- “Reasoning requires very little computation, but 

sensorimotor and perception skills require 
enormous computational resources”

- “It is comparatively easy to make computers 
exhibit adult level performance on intelligence 
tests or playing checkers, and difficult or 
impossible to give them the skills of a 
one-year-old when it comes to perception and 
mobility"

95



- How to create a system that perceive and 
interacts with the environment?

- Where’s the data and what data is available?
- Correspondence (observation, action, goal?)
- Designing good optimization problems?
- Is the system safe? Easy to use?

96

Why is robotics challenging? 
How is robotics different from vision and language?



Today …

- Focus on robotics manipulation 
- Sensing vs Task & Motion Planning
- Three sections

- Robotics and Vision
- NLP and Decision Making
- Unify them all

97



I. Robotics and 
Computer Vision
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I. Robotics and Computer 
Vision

- Scaling Data

99



I.I Scaling Data

- Through Simulation
- Through Real World Data

100



Case Study 1: DexNet 2.0

101Mahler, Jeffrey, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. "Dex-net 
2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics." arXiv preprint arXiv:1703.09312 (2017).



Case Study 1: DexNet 2.0

102Mahler, Jeffrey, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. "Dex-net 
2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics." arXiv preprint arXiv:1703.09312 (2017).

1,500 3D object mesh models



Case Study 1: DexNet 2.0

103Mahler, Jeffrey, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. "Dex-net 
2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics." arXiv preprint arXiv:1703.09312 (2017).



Case Study 1: DexNet 4.0

104

Mahler, J., Patil, S., Kehoe, B., Van Den Berg, J., Ciocarlie, M., 
Abbeel, P., & Goldberg, K. (2015, May). Gp-gpis-opt: Grasp 
planning with shape uncertainty using gaussian process implicit 
surfaces and sequential convex programming. In 2015 IEEE 
international conference on robotics and automation (ICRA) (pp. 
4919-4926). IEEE.

Mahler, Jeffrey, Matthew 
Matl, Xinyu Liu, Albert Li, 
David Gealy, and Ken 
Goldberg. "Dex-net 3.0: 
Computing robust 
vacuum suction grasp 
targets in point clouds 
using a new analytic 
model and deep 
learning." In 2018 IEEE 
International Conference 
on robotics and 
automation (ICRA), pp. 
5620-5627. IEEE, 2018.

http://www.youtube.com/watch?v=r-0PKne9e_w


Case Study 2: EvoNeRF (aka DexNeRF 2)

105Kerr, Justin, Letian Fu, Huang Huang, Yahav Avigal, Matthew Tancik, Jeffrey Ichnowski, Angjoo Kanazawa, and Ken Goldberg. "Evo-NeRF: 
Evolving NeRF for Sequential Robot Grasping of Transparent Objects." In 6th Annual Conference on Robot Learning.
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106Kerr, Justin, Letian Fu, Huang Huang, Yahav Avigal, Matthew Tancik, Jeffrey Ichnowski, Angjoo Kanazawa, and Ken Goldberg. "Evo-NeRF: 
Evolving NeRF for Sequential Robot Grasping of Transparent Objects." In 6th Annual Conference on Robot Learning.



Case Study 2: EvoNeRF (aka DexNeRF 2)

107Kerr, Justin, Letian Fu, Huang Huang, Yahav Avigal, Matthew Tancik, Jeffrey Ichnowski, Angjoo Kanazawa, and Ken Goldberg. "Evo-NeRF: 
Evolving NeRF for Sequential Robot Grasping of Transparent Objects." In 6th Annual Conference on Robot Learning.

https://docs.google.com/file/d/1wHoOS8YfDZiZBelrXERG9sy8wCY_MNMI/preview


I.I Scaling Data

- Through Simulation
- Through Real World Data

108



Case Study 3: Supersizing Self-supervision

109Pinto, Lerrel, and Abhinav Gupta. "Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours." In 2016 IEEE 
international conference on robotics and automation (ICRA), pp. 3406-3413. IEEE, 2016.

50K data points collected over 700 hours
(Before DexNet)



Case Study 3: Supersizing Self-supervision

110Pinto, Lerrel, and Abhinav Gupta. "Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours." In 2016 IEEE 
international conference on robotics and automation (ICRA), pp. 3406-3413. IEEE, 2016.



Case Study 4: Equivariant Model

111Zhu, Xupeng, Dian Wang, Ondrej Biza, Guanang Su, Robin Walters, and Robert Platt. "Sample efficient grasp 
learning using equivariant models." arXiv preprint arXiv:2202.09468 (2022).

Can we scale more efficiently with online vision data? 



Case Study 4: Equivariant Model

112Zhu, Xupeng, Dian Wang, Ondrej Biza, Guanang Su, Robin Walters, and Robert Platt. "Sample efficient grasp 
learning using equivariant models." arXiv preprint arXiv:2202.09468 (2022).

Can we scale more efficiently with online vision data? 



Case Study 4: Equivariant Model

113Zhu, Xupeng, Dian Wang, Ondrej Biza, Guanang Su, Robin Walters, and Robert Platt. "Sample efficient grasp 
learning using equivariant models." arXiv preprint arXiv:2202.09468 (2022).

Can we scale more efficiently with online vision data? 

http://www.youtube.com/watch?v=0jaHpz3KQ7I&t=4


Case Study 5: MVP 

114Xiao, Tete, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. "Masked visual pre-training for motor control." 
arXiv preprint arXiv:2203.06173 (2022).



Case Study 5: MVP 

115Radosavovic, Ilija, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell. "Real-world 
robot learning with masked visual pre-training." arXiv preprint arXiv:2210.03109 (2022).



Case Study 5: MVP 

116Radosavovic, Ilija, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell. "Real-world 
robot learning with masked visual pre-training." arXiv preprint arXiv:2210.03109 (2022).



Case Study 5: MVP 

117Radosavovic, Ilija, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell. "Real-world 
robot learning with masked visual pre-training." arXiv preprint arXiv:2210.03109 (2022).



II. Robotics and Natural 
Language Processing

118Concepts largely borrowed from Jacob Andrea’s slides [here]

https://drive.google.com/file/d/1V-iE98PuVKD3JMNnDiN0AdPgcUMPqepD/view?usp=sharing


II. Language and Decision 
Making

119



Move into the living 
room. Go forward 
then face the sofa.
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Why is this hard?

Move into the living room. Go forward then face the sofa.

People don’t talk about low-level actions!

Trying to learn π directly means simultaneously learning how 
words relate to goals and how goals specify actions. 

Can we separate the two?



123

Why might mapping words to goals be easy?

Instruction givers are cooperative, instructions optimized to 
be understandable (subject to constraints).

Language is well-suited (optimized?) for communicating the 
kinds of goals that people care about.



Insights from linguistic semantics:

1. The meaning of a sentence is a function from possible 
worlds to truth values.

i.e “the blue ball is next to the open red door” is a boolean 
function that inspects the current state of the world…

2. Sentence meanings / functions are built compositionally 
from sentences themselves.

124Tarski, Alfred. "Der Wahrheitsbegriff in den formalisierten Sprachen." Studia philosophica 1 (1936).
Montague, Richard. "The proper treatment of quantification in ordinary English." In Approaches to natural language: Proceedings of the 1970 Stanford workshop on 
grammar and semantics, pp. 221-242. Springer Netherlands, 1973.



Mapping Instructions to Actions

125
Artzi, Y. and Zettlemoyer, L. (2013). Weakly supervised learning of semantic parsers for mapping instructions to actions. Transactions of the Association for Computational Linguistics, 1:49–62.
Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee, A. G., Teller, S., and Roy, N. (2011). Understanding natural language commands for robotic navigation and mobile manipulation. In 
Proceedings of the Twenty-Fifth AAAI Conference on Articial Intelligence, AAAI’11, page 1507–1514. AAAI Press.

Learning a function from strings to goal predicates using task completion 
as feedback
Jointly Optimize for the Cost function + LM 
C: Example specific cost function
θ: language understanding model
τ: dataset of trajectories 
s: instruction

Inferring plans from natural language commands



II. Language and Decision 
Making

126

- Language as a medium for task 
specification -> learn vision models to 
check constraints!



Case Study 6: Spatial Object-Centric 
Representations for Sequential Manipulation

127Yuan, Wentao, Chris Paxton, Karthik Desingh, and Dieter Fox. "Sornet: Spatial object-centric representations for sequential manipulation." In Conference on Robot Learning, pp. 148-157. 
PMLR, 2022.

Only unary and binary relations



Case Study 6: Spatial Object-Centric 
Representations for Sequential Manipulation

128Yuan, Wentao, Chris Paxton, Karthik Desingh, and Dieter Fox. "Sornet: Spatial object-centric representations for sequential manipulation." In Conference on Robot Learning, pp. 148-157. 
PMLR, 2022.

How to use this? 
1. Generate a state vector based on SORNet  
2. A task and motion planner takes the state vector and desired goal (formulated as a list of 

predicate values to be satisfied, i.e. goto, grasp, etc.)
a. Outputs a sequence of primitive skills



Case Study 6: Spatial Object-Centric 
Representations for Sequential Manipulation

129Yuan, Wentao, Chris Paxton, Karthik Desingh, and Dieter Fox. "Sornet: Spatial object-centric representations for sequential manipulation." In Conference on Robot Learning, pp. 148-157. 
PMLR, 2022.

*Can also do viso-servoing: 
1. Trained a regressor on top of frozen SORNet embeddings to predict the continuous 

direction between two objects (Obj-Obj) or the direction the end effector should move to 
reach a certain object (EE-Obj)

2. Use the distance as the objective to guide the robot to reach a target object



III. Unify Robotics, Vision, and NLP

130

- Understanding Semantics with CLIP
- Language models as planners 
- Unify it all?



Case Study 7: CLIPORT

131Shridhar, Mohit, Lucas Manuelli, and Dieter Fox. "Cliport: What and where pathways for robotic manipulation." In Conference on Robot Learning, pp. 894-906. PMLR, 2022.
Zeng, Andy, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis Armstrong et al. "Transporter networks: Rearranging the visual world for robotic 
manipulation." In Conference on Robot Learning, pp. 726-747. PMLR, 2021.

Trained from demonstration

https://docs.google.com/file/d/1KvXN3XrogtoOPAQm59e9k8mSHKIRctfX/preview


Case Study 7: CLIPORT

132Shridhar, Mohit, Lucas Manuelli, and Dieter Fox. "Cliport: What and where pathways for robotic manipulation." In Conference on Robot Learning, pp. 894-906. PMLR, 2022.
Zeng, Andy, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis Armstrong et al. "Transporter networks: Rearranging the visual world for robotic 
manipulation." In Conference on Robot Learning, pp. 726-747. PMLR, 2021.

For pick-conditioned placing (c), deep feature template matching occurs with a local crop 
around the sampled pick as the exemplar. Rotations of the crop around the pick are used 
to decode the best placing rotation. 



Case Study 7: CLIPORT

133Shridhar, Mohit, Lucas Manuelli, and Dieter Fox. "Cliport: What and where pathways for robotic manipulation." In Conference on Robot Learning, pp. 894-906. PMLR, 2022.
Zeng, Andy, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis Armstrong et al. "Transporter networks: Rearranging the visual world for robotic 
manipulation." In Conference on Robot Learning, pp. 726-747. PMLR, 2021.



Case Study 8: ConceptFusion

134Jatavallabhula, Krishna Murthy, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh Iyer et al. "ConceptFusion: Open-set Multimodal 3D Mapping." arXiv preprint 
arXiv:2302.07241 (2023).

Multi-modal concepts mapped from 2D into 3D (i.e. point clouds)

https://docs.google.com/file/d/1oslDbDzlQZ7I6XbSEEhtCVfWyQQaRfQa/preview


Case Study 8: ConceptFusion

135Jatavallabhula, Krishna Murthy, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh Iyer et al. "ConceptFusion: Open-set Multimodal 3D Mapping." arXiv preprint 
arXiv:2302.07241 (2023).

Mask2Former



Case Study 8: ConceptFusion

136Jatavallabhula, Krishna Murthy, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh Iyer et al. "ConceptFusion: Open-set Multimodal 3D Mapping." arXiv preprint 
arXiv:2302.07241 (2023).

Mask2Former



Case Study 8: ConceptFusion

137Jatavallabhula, Krishna Murthy, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh Iyer et al. "ConceptFusion: Open-set Multimodal 3D Mapping." arXiv preprint 
arXiv:2302.07241 (2023).

Mask2Former



Case Study 8: ConceptFusion

138Jatavallabhula, Krishna Murthy, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh Iyer et al. "ConceptFusion: Open-set Multimodal 3D Mapping." arXiv preprint 
arXiv:2302.07241 (2023).



III. Unify Robotics, Vision, and NLP

139

- Understanding Semantics with CLIP
- Language models as planners 
- Unify it all?



Case Study 9: SayCan

140
Ahn, Michael, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn et al. "Do as i can, not as i say: Grounding language in robotic affordances." arXiv 
preprint arXiv:2204.01691 (2022).

Problems: (1) task-grounding (i.e., a skill language description) and (2) world-grounding (i.e., 
skill feasibility in the current state).
Solution: (1) Image based behavior cloning for each skill 
(2) train affordance functions: a particular skill -> success probability in the current state



Case Study 9: SayCan

141

Probability of completing a subtask 
conditioned on the current state (aka 
affordance)

Probability of a language description of a skill π 
making progress towards executing the instruction i

Ahn, Michael, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn et al. "Do as i can, not as i say: Grounding language in robotic affordances." arXiv 
preprint arXiv:2204.01691 (2022).



Case Study 9: SayCan

142
Ahn, Michael, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn et al. "Do as i can, not as i say: Grounding language in robotic affordances." arXiv 
preprint arXiv:2204.01691 (2022).

https://docs.google.com/file/d/1PhXTc9_CSItjwaoBx2Kw1MzzKra8XIeg/preview


Case Study 9: SayCan 

143
Ahn, Michael, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn et al. "Do as i can, not as i say: Grounding language in robotic affordances." arXiv 
preprint arXiv:2204.01691 (2022).

How much data and compute do you need?

Yes



Case Study 10: Inner Monologue

144Huang, Wenlong, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng et al. "Inner monologue: Embodied reasoning through planning with language models." arXiv preprint 
arXiv:2207.05608 (2022).

Introduce feedback!



Case Study 11: ConceptFusion revisited

145Jatavallabhula, Krishna Murthy, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh Iyer et al. "ConceptFusion: Open-set Multimodal 3D Mapping." arXiv preprint 
arXiv:2302.07241 (2023).

Can we improve grounding of general LLM?
Solution: provide more options and context! 
(prompt tuning) 



III. Unify Robotics, Vision, and NLP

146

- Language models as planners 
- Unify it all?



Case Study 13: A Generalist Agent

147
*May not be the best performing agent in each subcategories yet.
Reed, Scott, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez et al. "A generalist agent." arXiv preprint arXiv:2205.06175 
(2022).

Can one model rule all? *Yes

Tokenize everything Invert the tokenization

Model outputs a distribution over the next discrete token. 



Case Study 13: A Generalist Agent

148
Reed, Scott, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez et al. "A generalist agent." arXiv preprint arXiv:2205.06175 
(2022).



Case Study 14: RT1

149Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale." 
arXiv preprint arXiv:2212.06817 (2022).

https://docs.google.com/file/d/1LATB4Oc01HWRUq2CWKBDjTCbM8fmJe0c/preview


Case Study 14: RT1

150Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale." 
arXiv preprint arXiv:2212.06817 (2022).

Not tokenized images (Extracted by EfficientNetB3)



Case Study 14: RT1

151Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale." 
arXiv preprint arXiv:2212.06817 (2022).

Results on Sim2Real Transfer Results on Mixed Dataset

“Classroom eval: “pick” and “move to” skills
Little degradation in performance on mixed dataset training

From MT-Opt
Use RetinaGan



Case Study 14: RT1 with Saycan

152Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale." 
arXiv preprint arXiv:2212.06817 (2022).

https://docs.google.com/file/d/1X0lEzwrTmIs6iOIdlhfWqXcqhT9pIpeY/preview
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Case Study 15: PaLM-E

A (540B PaLM+22B ViT) multimodal PaLM that do the following
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Case Study 15: PaLM-E
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Case Study 15: PaLM-E

Downstream
1. TAMP Simulation Controller
2. Interactive language: Talking to robots 

in real time.
3. RT1 
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Case Study 15: PaLM-E

TAMP Task

Table top pushing environment 

RT1 Environments 
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Case Study 15: PaLM-E

Downstream
1. TAMP Simulation Controller
2. Interactive language: Talking to robots 

in real time.
3. RT1 
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Case Study 15: PaLM-E

TAMP Task

Table top pushing environment 
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Case Study 15: PaLM-E

RT1 Environments 
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I. Robotics and Vision
II. Robotics and NLP 

III. Unify it all?
IV. Where does this leave us?



Generalization in robotics vs Specialist Systems: 
Can we unify them?

161

http://www.youtube.com/watch?v=r-0PKne9e_w&t=3
https://docs.google.com/file/d/1X0lEzwrTmIs6iOIdlhfWqXcqhT9pIpeY/preview


Low level stuff? 

162Sai Vemprala, Rogerio Bonatti, Arthur Bucker, Ashish Kapoor. ChatGPT for Robotics: Design Principles and Model Abilities. MSR-TR-2023-8, Microsoft (2023).



Can we scale efficiently? 
And how much data?

163

Sim2Real Real2Real

Kerr, Justin, Letian Fu, Huang Huang, Yahav Avigal, Matthew Tancik, Jeffrey Ichnowski, Angjoo Kanazawa, and Ken Goldberg. "Evo-NeRF: Evolving NeRF for Sequential Robot Grasping of Transparent Objects." In 6th Annual Conference on Robot 
Learning.
Ho, Daniel, Kanishka Rao, Zhuo Xu, Eric Jang, Mohi Khansari, and Yunfei Bai. "Retinagan: An object-aware approach to sim-to-real transfer." In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 10920-10926. IEEE, 2021.
Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale." arXiv preprint arXiv:2212.06817 (2022).



Thanks!

164



CLIPort
What and Where Pathways for Robotic 
Manipulation

● Conference on Robot Learning, 2022.
● Authors: Mohit Shridhar, Lucas Manuelli, Dieter Fox
● Presenter: Yatong Bai

165



CLIPort

Task: Language-conditioned object manipulation.
● An imitation learning task.
● Idea: try to mimic an expert via supervised learning.

Inputs: 
● A visual observation (RGB and depth, shape H×W×4) ot;

● A language instruction lt. 
e. g. pack all blue and yellow boxes in the brown box.

Outputs:
● Picking location Tpick;
● Placing location Tplace.



Architecture of CLIPort

Three Fully-Convolutional-Networks (FCNs):

● Pick FCN:      fpick: (ot, lt) → Qpick.

○ Qpick is H×W×1. Tpick=argmaxlocationQpick.

● Query FCN: Φquery: (ot[Tpick], lt) → Qquery.

○ ot[Tpick] is a c×c crop of ot centered at Tpick.

○ Qquery is c×c×3.

● Key FCN:     Φkey: (ot, lt) → Qkey.

○ Qkey is H×W×3.

○ Qplace=Qquery∗Qkey, where ∗ is the correlation operation. 

○ Do this for a number of rotations.

○ Qplace is H×W×1. Tplace=argmaxlocationQplace.

Architecture of each FCN (more on this later)



CLIP + Transporter = CLIPort

CLIP:

● Vision-language pre-training 
matching images to descriptions.

● Jointly learns a vision encoder 
and a language encoder.

● Match the direction of the visual 
and language embeddings.

168

Transporter:

● Also for object manipulation 
imitation learning.

● Same tri-FCN architecture.

● No language conditioning.

Architecture of each Transporter FCN



Architecture of CLIPort – Details

CLIP ResNet50 (Frozen)

CLIP Sentence Encoder (Frozen)

Transporter ResNet (Untrained)

ot

ot

lt Q{pick,query,key}

 Train loss: cross 
entropy
 (end-to-end 
supervised)

Despite its name, CLIPort’s training isn’t CLIP-like. It uses CLIP-pretrained modules.



Experiment Results
Baselines:

● Transporter-only: no language grounding.
● CLIP-only: only the CLIP branch of CLIPort.

○ No depth information.

Task examples:
● Separating piles (seen colors yellow, brown, gray, cyan).
● Separating piles (unseen colors orange, purple, pink, white).
● Packing seen Google objects.
● Packing unseen Google objects,
● Etc… 10 tasks in total, 8 has seen and unseen.

Transporter and CLIP saturate
Multi: trained on “seen” splits of all tasks.
Multi-attr: “seen” splits of all tasks and

“unseen” splits of all other tasks.



Real-world tasks

Affordance predictions 
(Q{pick,place})

More Experiment Results

Thank you.

Questions?

Main claim: 
● The spatial and semantic streams enable accurate 

language-grounded object manipulation.
Question:

● CLIP-only does reasonably well.
● Is CLIPort’s improvement due to the spatial 

stream or simply the depth map?



Inner Monologue: Embodied 
Reasoning through Planning 
with Language Models

172

● 6th Annual Conference on Robot Learning
● Authors: Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky 

Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor 
Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas 
Jackson, Linda Luu, Sergey Levine, Karol Hausman, Brian Ichter



What happens in the 
robot planner

What happens in the 
human planner



Inner Monolog
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https://docs.google.com/file/d/1HLPB7F-B-B0NlQ1VfKHWR2I4Md5x-5sR/preview


Problem statement
● A library of short horizon skills from a library of 

previously trained policies πi and their language 
descriptions 

● Planner which is LLM - attempts to find the sequence 
of of skill to accomplish a task

● Environment - success detection, object detection, 
scene description, visual-question answering, and even 
human feedback. 



Planner - LLM
One of the remarkable observations in 
recent machine learning research is that 
large language models (LLMs) can not 
only generate fluent textual 
descriptions, but also appear to have 
rich internalized knowledge about the 
world.



Sources of feedback



Simulated Table top Rearrangement

● We use InstructGPT [91], a 1.3B parameter language model fine-tuned from GPT-3 [9] with human feedback, 
accessed through OpenAI API.

● Scripted modules to provide language feedback in the form of object recognition (Object), success detection 
(Success), and task-orogress scene description (Scene), and (iii) a pre-trained language-conditioned 
pick-and-place primitive

● For Object + Success method, we provide textual feedback of low-level policy success detection results 
after each policy execution.

● For Object + Scene method, we provide task-progress scene description as a list of achieved sub-goals 
after each pick-and-place execution
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https://docs.google.com/file/d/1GNJWDAydNdIWuGnwQmN2l2fXKC_hKqWe/preview


Real World Table top Rearrangement

● We use InstructGPT [91], a 1.3B parameter language model fine-tuned from GPT-3 [9] with human feedback, 
accessed through OpenAI API.

● Two tasks: (i) a simple 3-block stacking task where 2 blocks are already pre-stacked, and (ii) a more complex 
long-horizon sorting task to place food in one plate and condiments in another (where categorizing food 
versus condiments is autonomously done by the LLM planner).

● For the block stacking task, the scene description contains a list of currently visible objects and a list of 
previously visible objects that are no longer visible. 

● For the object sorting task, the scene description contains a list of currently visible objects and a list of objects 
that the robot has successfully moved into a plate.
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Parts of the 
prompt
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https://docs.google.com/file/d/1-nRQbzmJGXYecaVD92rZ7tc15F-CFrsX/preview


Real World Mobile Manipulation

● Three task families:  four manipulation tasks, two dexterous manipulation tasks utilizing drawers, and two long-horizon 
combined manipulation and navigation tasks.

● We use PALM, a 540B parameter language model trained on a large datasets that include high-quality web documents, 
books, Wikipedia, conversations, and GitHub code.

● We use human-provided object recognition to provide feedback about the presence of objects visible to the robot 
camera. For example, if there were only a coke can and an apple on top of the kitchen counter, then the 
human-provided object recognition feedback would appear as “[scene: coke can, apple]”



The baseline, SayCan [21], is a method that 
plans and acts in diverse real world 
scenarios by combining an LLM with value 
functions of underlying control policies. While 
SayCan creates plans that are grounded 
by the affordances of value functions, the 
LLM predictions in isolation are never 
given any closed-loop feedback.
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Part of the 
prompt


