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Last week: how are robot controlled

- Existing working systems are not
end to end reinforcement learning
/ imitation learning
- 2 key ideas
- Abstraction
- Hierarchy




Last week: how are robot controlled

- Abstraction

- Lowest level: joint position (torque PD Control)

- Middle: cartesian space control (jacobian + PID
control) / model-predictive control

- Upper: motion planning (RRT, PRM) / SLAM

- Beyond: task planning (where to grasp? Ordering of
task? affordance?) / where to go?



Last week: how are robot controlled

Modularity
Different modules work together to solve a problem
“If we make each module work perfectly, then a problem
will be solved!”
In addition to hierarchical modules, you can expand
horizontally!

- Analyze failure modes and catch them individually



Summary from last week

- Advantages:
- “If each part works, then as whole it should work!” *after some integration
tests
- Interpretability!
- We FULLY know the robot’s dynamics!
- Disadvantages:
- Slow / high latency: planning / scouting out a scene takes
sec/minutes. The robot needs to move now!
- Many of them are not reactive: take a capture of the scene
then the robot moves (what if the object is a moving target?)
- We as grad students needs to implement each of the module!
- Data labelers (amazon turk, scale ai) is more scalable than grad
students!
- But, the framework as whole does not scale with data
- Each part may still scale with increasing data
- NOT align with the bitter lesson [1]! Too much inductive bias!

[1] Sutton, R. (2019). The bitter lesson. Incomplete Ideas (blog), 13(1), 38.



The bitter lesson

The bitter lesson is based on the historical observations that 1) Al researchers
have often tried to build knowledge into their agents (abstraction and
modularity), 2) this always helps in the short term, and is personally satisfying to
the researcher, but 3) in the long run it plateaus and even inhibits further
progress (each module becomes increasing hard to improve/fix), and 4)
breakthrough progress eventually arrives by an opposing approach based on
scaling computation by search and learning (robot learning?). The eventual
success is tinged with bitterness, and often incompletely digested, because it is
success over a favored, human-centric approach.

One thing that should be learned from the bitter lesson is the great power of
general purpose methods, of methods that continue to scale with increased
computation even as the available computation becomes very great. The
two methods that seem to scale arbitrarily in this way are search and learning.

Sutton, R. (2019). The bitter lesson. Incomplete Ideas (blog), 13(1), 38.



How can we move away from abstraction?

- Predict one of

Lowest level: joint torque (>1000 Hz)

Lower level: joint position (+ PD Control with torque)
(10-200 Hz)

Middle: cartesian space control (jacobian + PID
control) (ideally > 10 Hz)

Upper: motion planning (RRT, PRM) (*a few seconds)
Beyond: task planning (where to grasp? Ordering of
task? affordance?) / where to go? (this can take
arbitrarily long)



How can we move away from abstraction?

- Upper: motion planning (RRT, PRM) (*a few seconds)
- Just make it learning based / optimize it better!
- Still not reactive though unless you keep planning!

Metric BiTStar MNet cuRobo v0.6.2 DiffusionSeeder

Condition L) 3 &8 § | Nap=1 10 100 | Niers=25 50 100 200 475
PlanTime (s) | 0352 048 | 050 1095 0.049 0.082 0207 | 0.015 0017 0020 0027 0.045
Total Time (s) 069 065 | 050 195 0079 0112 0237 0.045 0.047 0050 0057 0.075
Success Rate 26.6% 60% | 27.4% 83% | 662% 71.1% 11.9% 85.1% 85.8% 849% B85.1% 86.2%
Jerk (rad/s®) 472 499 | 568 606 98.5 96.7 97.8 108.8 1036 993 935 896
Motion Time (s) 184 198 | 535 771 1.14 1.17 1.18 1.26 126 127 1.30 1.26
Translation Err (mm) | 389 405 | 866 392 0.05 006 006 0.98 095 091 050 078
Quaternion Err (%) 133 L10 | 727 268 0.63 09 093 1.78 1.44 1.20 .03 092

Table 1: Evaluation with partial observations of a depth image for BiTStar, M7Net, cuRobo and Diffusion-
Seeder. Mean values of each metric on successfully solved problems over the 1791 test problems are reported.
As DiffusionSeeder-50 has a similar success to DiffusionSeeder-475 but is 60% faster at planning, we use
DiffusionSeeder-50 when reporting primary results.

Huang, H., Sundaralingam, B., Mousavian, A., Murali, A., Goldberg, K., & Fox, D. DiffusionSeeder: Seeding Motion Optimization with Diffusion for Rapid Motion Planning. In 8th
Annual Conference on Robot Learning.



How can we move away from abstraction?

- Predict one of

- Lowest level: joint torque (2000 Hz)

- Lower level: joint position (+ PD Control with torque)

- Middle: cartesian space control (jacobian + PID
control) / model-predictive control

: . : |
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- Let's remove motion planning and task planning to
make the policy more reactive and lower latency

- Control from vision (+ proprioception)

[1] Sutton, R. (2019). The bitter lesson. Incomplete Ideas (blog), 13(1), 38.



. Imitation learning

Let's ignore language for now. How to get from
vision to action?

Image
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ALVIN

Input: image

Output: steer
angle

Fully connected
network

Pomerleau, D. A. (1988). Alvinn: An autonomous land vehicle in a neural network. Advances in neural information processing systems, 1.

ALVINN:
AN AUTONOMOLS LAND VEMNICLE IN A
NEURAL NETWORK
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What are some problems

Demonstrations are non-markovian
Demonstrations are multimodal

To(as|o4) mo(as|oy, ..., 0¢)

behavior depends only
on current observation

If we see the same thing
twice, we do the same thing  Often very unnatural for

twice, regardless of what human demonstrators
happened before
LA = = = el

Levine, Sergey. Deep RL Lecture 2.
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Regressing Continuous Action

- Data
— L2 loss

*Problem with L1/ L2 regression:
- Assumes unimodal gaussian
prior
- Mode covering
- Gonna hit the tree!
- Naive solution: mixture of

gaussians

13



Implicit BC

(@)= -
1 f

Explicit Policy Impicit Policy
Fa 0) ‘ » o . »
‘ --l: ) e
S IR
(8) Ty mrgmin Ejlom)

wA

Figure 1. (a) In contrast to explicit policies, implicit policies leverage parameterized energy functions that take both observations (e.g. images) and
actions as inputs, and optimize for actions that minimize the energy landscape (b). For leaming complex, closed-loop, multimodal visuwomotor tasks
such as precise block insertion (c) and sorting (d) from human demonstrations, implicit policies perform substantially better than explicit ones.

Florence, P, Lynch, C., Zeng, A., Ramirez, O. A., Wahid, A., Downs, L., ... & Tompson, J. (2022, January). Implicit behavioral cloning. In
Conference on Robot Learning (pp. 158-168). PMLR.
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Implicit BC
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Florence, P, Lynch, C., Zeng, A., Ramirez, O. A., Wahid, A., Downs, L., ... & Tompson, J. (2022, January). Implicit behavioral cloning. In
Conference on Robot Learning (pp. 158-168). PMLR.
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Diffusion Policy
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Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burchfiel, B., & Song, S. (2023). Diffusion policy: Visuomotor policy learning via action diffusion. arXiv 16

preprint arXiv:2303.04137.



Diffusion Policy

Diffusion Policy LSTM-GMM BET

LAAS
-

Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burchfiel, B., & Song, S. (2023). Diffusion policy: Visuomotor policy learning via action diffusion. arXiv
preprint arXiv:2303.04137.
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https://docs.google.com/file/d/1dlCF0EbheDDYYPXcjK45PWOK2TAzYeQT/preview
https://docs.google.com/file/d/1XxLH02y8HvicUyYz8gfjiZp7Yn-okLxT/preview

What's an efficient training scheme?
(pre-training?)

- Efficient multi-task learning -> reduce cost of transfer
learning / task adaptation
- Visual Pre-training;:
- MAE -> the MVP
- Sequence pre-training:
- BERT (efficient fine-tuning) -> RPT

18



Masked Visual Pre-training for Motor
Control

In-the-Wild Data Masked Autoencoder Real-World Robotic Tasks

Over 4.5 million images (a) Masking (b) Autoencoder Two robots (xArm, Allegro hand)

Five diverse data sources Eight tasks (scenes, objects)

‘

l\.

'..5
&

1] B

Radosavovic, ., Xiao, T., James, S., Abbeel, P., Malik, J., & Darrell, T. (2023, March). Real-world robot learning with masked
visual pre-training. In Conference on Robot Learning (pp. 416-426). PMLR.
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Masked Visual Pre-training for Motor

Control

T

-~
!
—n

Success (%)

Success (%)
¥ &8 8 8

visual pre-training. In Conference on Robot Learning (pp. 416-426). PMLR.
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What's an efficient training scheme?
(pre-training?)

- Efficient multi-task learning -> reduce cost of transfer
learning / task adaptation
- Visual Pre-training;:
- MAE -> the MVP
- Sequence pre-training:
- BERT (efficient fine-tuning) -> RPT

21



Robot Pretrained Transformer

Dataset

Sensorimotor Prediction
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Radosavovic, 1., Shi, B., Fu, L., Goldberg, K., Darrell, T., & Malik, J. (2023, December). Robot learning with sensorimotor

pre-training. In Conference on Robot Learning (pp. 683-693). PMLR. 22



Robot Pretrained Transformer

a

Frozen

M

Task Specific Linear Probe z
Training

M

Task Specific Fine-tuning

Radosavovic, I., Shi, B., Fu, L., Goldberg, K., Darrell, T., & Malik, J. (2023, December). Robot learning with sensorimotor
pre-training. In Conference on Robot Learning (pp. 683-693). PMLR.

23


https://docs.google.com/file/d/1GoV8E1-iqX59I_MtEJIgm4KufzhohQfN/preview

Robot Pretrained Transformer

Scales with Data
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Radosavovic, 1., Shi, B., Fu, L., Goldberg, K., Darrell, T., & Malik, J. (2023, December). Robot learning with sensorimotor
pre-training. In Conference on Robot Learning (pp. 683-693). PMLR.
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Similarly, we can raise to 3D representations

Or implicit 3D (multiview?)

25



Is 3D Necessary?: A case study in manipulation

4

- ]
& -

')
Denolsed pose estimate

(d) 3D Diffuser Actor
—y

Noisy pose 850"\0‘0 C o

—>

Transformer

UNet

(c) 3D lefusmn Policy

3D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations: Ze et al. 2024
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Is 3D Necessary?: A case study in manipulation

e S

Lifting to 3D

ng_,

3D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations: Ze et al. 2024
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Is 3D Necessary?: A case study in manipulation
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3D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024

Prediction over
3D tokens.

Prediction over
1D pooled
tokens.

3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations: Ze et al. 2024
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Is 3D Necessary?: A case study in manipulation

Train Task completed in a row

episodes 1 2 3 4 5 Avg. Len
3D Diffusion Policy [22] Lang 28.7_{0,4 2.7&0_4 O-O:i:O.O 0.0*_0,0 O—OiO.O 0.31 +0.04
MCIL [71] All 304 1.3 0.2 0.0 0.0 0.31
HULC [70] All 41.8 16.5 5.7 1.9 1.1 0.67
RT-1 [49] Lang 533 22.2 9.4 3.8 1.3 0.90
ChainedDiffuser [21] (60 keyposes) Lang 499:001 21.14001 8.0+0.01 35500 1.5400 0.84:0.02
RoboFlamingo [72] Lang 82.4 61.9 46.6 33.1 23.5 248
SuSIE [45] All 87.0 69.0 49.0 38.0 26.0 2.69
GR-1 [58] Lang 854 71.2 59.6 49.7 40.1 3.06
3D Diffuser Actor (ours) Lang 93.8*0,01 80.3*0_0 66.23:0_01 53'3i0.02 4‘.2*0,01 3.35:0,04

Table 4: Zero-shot long-horizon evaluation on CALVIN on 3 random seeds.

3D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations: Ze et al. 2024
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Is 3D Necessary?: A case study in manipulation

3D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations: Ze et al. 2024

3D Diffusion PO“C)’ [22] ‘ Lang ‘ 28.7i0_.| 2.7'10,4 O-Oi0.0 0.010,0 O-O;tO.O 0.31 +0.04
3D Diffuser Actor (OUTS) ‘ Lang ‘ 93.8':0.01 80.3100 66.2i0_01 53.31&0,02 41'2d:0.(ll 3.35:0_04
3D Diffuser Actor significantly
better than 3D Diffusion
Policy!
30




Is 3D Necessary?: A case study in manipulation

Avg. Success.
2D Diffuser Actor 47.0
3D Diffuser Actor w/o RelAttn. 78 ka5
3D Diffuser Actor (ours) 81.3
Ablations show that 3D

encoding is critical for
performance.

3D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
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Is 3D Necessary?: A case study in grounding

Choose the mug with ...

A B no Iogo
Rotate(A)

Rotate(B) return A

a wide handle
e

Rotate(B)

return B

Language Grounding with 3D Objects : Thomason et al. 2021

32



Is 3D Necessary?: A case study in grounding

Perception is active,

Need to rotate object to perceive
information necessary to ground
expression.

Language Grounding with 3D Objects : Thomason et al. 2021



Is 3D Necessary?: A case study in grounding

B d. /32 |
Cy ¥ T,
possc g . l—>view=7
‘the chair with skinny legs” ml B view=5
Initial @ ) @ ................. 2\.

B D@(‘f >

Language Grounding with 3D Objects : Thomason et al. 2021
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Is 3D Necessary?: A case study in grounding

Language Grounding with 3D Objects : Thomason et al. 2021

Assumptions revisited:

Active perception assumed
solved, agent provided with
multi-view image renderings of
object.

35



Is 3D Necessary?: A case study in grounding

CLIP embed multi-view
images and text query.

Language Grounding with 3D Objects : Thomason et al. 2021

-----------------

.................

.................
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Is 3D Necessary?: A case study in grounding

Pool view CLIP
embeddings, concatenate
each objects’ pooled views

with query embedding

Language Grounding with 3D Objects : Thomason et al. 2021
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Is 3D Necessary?: A case study in grounding

Independently score each
objects’ affinity to text query
with MLP.

Language Grounding with 3D Objects : Thomason et al. 2021
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Is 3D Necessary?: A case study in grounding

MATCH All 89.2 +0.9

75.2+0.7 822104

83.9 +0.5

68.7 +0.9

76.5 +0.5

Human (U) All 94.0

90.6 92.3

93.4

88.9

91.2

Language Grounding with 3D Objects : Thomason et al. 2021

Fares okay against
human performance

39




Is 3D Necessary?: A case study in grounding

f‘?\ PN
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=
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Voxel Prediction

Voxel-informed Language Grounding: Corona et al. 2022

) J

“The swivel
chair with 6
wheels"”

Voxel-informed
Language
Grounding

Idea: Use explicit 3D
representation as

anchor for grounding.
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Is 3D Necessary?: A case study in grounding

VLG

I

Scoring MLP
)

Operationalized by
appending features from
3D reconstruction model

to scoring function.

Voxel-informed Language Grounding: Corona et al. 2022

Visiolinguistic

~ N
Module

MLP

\

J Voxel-Language

A

Module

CLIP V&L
Encoder

-

L 1 L 1
g | the | black | swivel | chair |
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Is 3D Necessary?: A case study in grounding

Improves performance over
the standard model!

Did 3D intrinsically help?

MATCH

89.2 (0.9)

75.2(0.7) 82.2(0.4) | 83.9(0.5)

68.7 (0.9)

76.5 (0.5)

VLG (Ours)

91.2 (0.4)

78.4'0.7) 84.970.3) @ 86.0

711.7

79.0

Voxel-informed Language Grounding: Corona et al. 2022
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Is 3D Necessary?: A case study in grounding

Non-contextual Scoring

]‘(l)ll{.' ]}{lb.-jl)

nose

“thin handle”
I

Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024
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Is 3D Necessary?: A case study in grounding

Non-contextual Scoring

Moy

plog|l) [

2 key structures of prior work:

1. Candidates scored

independently.
m mode! 2. Multi-view images aggregated
T before passing to scoring
“thin handle”| & function.

Does this make sense for

| . :
') comparative referential
expressions?

44

Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024



Is 3D Necessary?: A case study in grounding

Alternative formulation, using
two types of context:

2. All image embeddings
passed to scoring
function.

1. Candidates scored jointly.

Contextual Scoring

plog|l, o) plogll, o)

| |

model
t

“thin handle”

——

*B views per object
45

Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024



Is 3D Necessary?: A case study in grounding

VLG
MAGiIC

~ 91.2(0.4) 78.4(0.7) 84.9(0.4) 86.0 71.7 79.0
/ 92.1(0.4) 81.3(0.9) 86.8(0.5) 87.7 75.4 81.7

N\ x

Does even better, without
requiring 3D!

Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024



Is 3D Necessary?: A case study in grounding

VALIDATION ACC.

Model Visual Blind All
MATCH 90.6(0.5) 77.0(0.7) 83.9(0.4)
+ obj. context  90.5(0.5) 76.8(0.6) 83.7(0.3)
MAGIC 92.1(0.4) 81.3(0.9) 86.8(0.5)
_obj. context  91.1(0.5) 79.4(1.1) 85.3(0.5)
- mv. context  91.0(0.6) 79.5(0.8) 85.3(0.4)
- both contexts  90.5(0.6) 78.2(1.2) 84.4(0.6)

47



Is 3D Necessary?: A case study in grounding

Ablation takeaways:

e Both contexts critical for
performance gain.

e Transformer provides no
significant gains over
MLP without context
addition.

Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024
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Is 3D Necessary?: A case study in grounding

Implication: 3D likely helped
before because it provided
information that was lost through
multi-view aggregation.

Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024

49



Why did 3D help one and not the other?

(d) 3D Diffuser Actor

Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024

50



Why did 3D help one and not the other?

Active perception, i.e. manipulation
of object was abstracted away from
grounding task!

Grounding submodule did not need
3D, but end-to-end pipeline likely
would!

Which One? Leveraging Context Between Objects and Multiple Views for Language Grounding: Mitra et al. 2024

2 <«> ‘
“the chair with skinny legs”

@I ¥
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Gallery of 3D Drawbacks

@ Q @ ................. - R ..
left S~ right ; : . : . : -
PerceiverlO Transformer %
3 | Languagetncoder |
t=3 l[: open the midde drawer B @ . a
"open the middle drawer” .

52

Perceiver-Actor: A Multi-Task Transformer for Robotic Manipulation: Shridhar et al. 2022



Gallery of 3D Drawbacks

t=3

“open the middle drawer”

3D voxel map useful for task, but
can quickly grow intractable!

Paper uses 1002 = 1M voxels!

Perceiver-Actor: A Multi-Task Transformer for Robotic Manipulation: Shridhar et al. 2022
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Gallery of 3D Drawbacks

Uses PercieverlO to subsample and
reduce complexity.

-

'

3

-

(
o

PerceiverlO Transformer

s=ot—4+4+4+—4+H4+H4+4+4+ 44

Language Encoder

Voxel Encoder
open the midde drawer E' E LY H tﬂ » y:j

VOGS NUSY 4

Perceiver-Actor: A Multi-Task Transformer for Robotic Manipulation: Shridhar et al. 2022
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Gallery of 3D Drawbacks

Like in video, implies tradeoff between
resolution/coverage and tractability.

Can be bad if task requires both fine motor
movements and large spatial coverage!

PerceiverlO Transformer
mwof—4—4+H4+H—4+H4+H4+H4+H4H 41
Language Encoder

Voxed Encoder
open the midde daawer [T\ E‘ LY H . t .
=y B

Perceiver-Actor: A Multi-Task Transformer for Robotic Manipulation: Shridhar et al. 2022
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Gallery of 3D Drawbacks

Relative 3D Denoising
Transformer
|
s

s O
iy
4
(d) 3D Diffuser Actor

3D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
Evo-NeRF: Evolving NeRF for Sequential Robot Grasping of Transparent Objects: (Kerr et al. 2022)

(d) Consecutive NeRF Updates
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Gallery of 3D Drawbacks

Require calibrated camera information.

OK in robotics domains, but can’t
leverage web-scale datal

3D Diffuser Actor: Policy Diffusion with 3D Scene Representations: Ke et al. 2024
Evo-NeRF: Evolving NeRF for Sequential Robot Grasping of Transparent Objects: (Kerr et al. 2022)
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Gallery of 3D Drawbacks

SHMAPERET
cw?ﬁ’.‘w

Objaverse-XL

couch  hammock sof. berth o hp-ed couch sofa
TOIFE ¢
bunk bed  berth ethdbkbd bunk ofa
)V?ﬁ\)q“sﬂ'
B haped ho pt berth dbo rd ik bunk bed ho'pna
Qc 8 Eaed ok |
bunk bed  couch ;;‘i ""‘i L(:f:u Lco p:d bunk bed  berth

e - ™

ShapeNet: An Information-Rich 3D Model Repository: Chang et al. 2015 58
Objaverse-XL: A Universe of 10M+ 3D Objects: Deitke et al. 2023



Gallery of 3D Drawbacks

ShareERET Qpigverse-XL
exyptany

" L-shaped

conich couch fa bunk bed
TO T IFR @
bunk bed bery £ berth
1 50K 3D Objects
b J 2
LIPS o Derth . couch  couc o Dunk bed | CoPna
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ShapeNet: An Information-Rich 3D Model Repository: Chang et al. 2015
Objaverse-XL: A Universe of 10M+ 3D Objects: Deitke et al. 2023



Gallery of 3D Drawbacks

® tiange Cap3D

3D model of & sakuea soft drink A 3D maodel of a bdse A3D ols el eubs 3D moded of 2 yellow Pikachu-

m"mdyﬂn mmmmm o skull, 200 themed Pokémon ball with a

uﬁmlmamng.md wecth resembling a shark feanuring plezs. Mnndpldwve-i
ol

ID made] of Notre Dame

Scalable 3D Captioning with Pretrained Models: Luo et al. 2023
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Gallery of 3D Drawbacks

® tiange Cap3D

3D model of 3 sakwea woft drink A 3D model of a bdse grnd A el ofa metl cube P Moded of a ycllow Pikachu-

themad Pokémon ball with a
feamuring & skull, pizza, sed black and gold siripe and

lightning bolr

can with purple and yollow paano with spekes and sdarp

gradicnt, Japancse writing, and weeth resembling a shark po

1M text-object pairs

Bowling ball, stand, and pin.

‘.‘ L‘

A cluster of five glass sphore
light bulbs suspended from a

Scalable 3D Captioning with Pretrained Models: Luo et al. 2023
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Gallery of 3D Drawbacks

In contrast, WebL| dataset
contains 10B+ images.

And tens of billions of
image-text pairs.

Scalable 3D Captioning with Pretrained Models: Luo et al. 2023
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Il. Towards Multi-Task Learning (Aka
Robot Foundation Models)

- We have covered many algorithms for learning a
single task.

- What's the challenge of real multi-task learning?
- Multi-task conditioning?

- Goal, language, or (?)
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Challenges of Multi-task Learning

Definition:

Given a task condition, the policy performs the correct task
amongst many training tasks.
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Challenges of Multi-task Learning

It is easy to overfit to a certain task, especially in simulation!

Why? There's just one object. No need to generalize!

N AN A S TS oS SRS

I, 2 S B N = QR _ .
¥ > . " " : . . “

James, S., Ma, Z., Arrojo, D. R., & Davison, A. J. (2020). Rlbench: The robot learning benchmark & learning environment. /IEEE
Robotics and Automation Letters, 5(2), 3019-3026.
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Il. Towards Multi-Task Learning (Aka
Robot Foundation Models)

- We have covered many algorithms for learning a
single task.

- What's the challenge of real multi-task learning?
- Multi-task conditioning?

- Goal, language, or (?)
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Goal Condition

Goal observation condition: sparsity

1. Goal relabeling to improve data utility:
a. Hindsight Experience Replay

2. Imagine subgoals for task completion
a. SuSIE
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Hindsight Experience
Replay

YIRTUAL GOAL
ACMIEVED

Usable for both RL and BC

Initialize A b ¢.g. initialize neural networks
Initialize replay buffer R
for episode =1, M do
Sample a goal g and an initial state 5.
fort =0,7T~1do
Sample an action a, using the behavioral policy from A:
a; « mp(s¢||g) & || denotes concatenation
Execute the action a; and observe a new state s,
end for
fort = 0,7~ 1do

re i=r(8,0a¢, 9)

Store the transition (s.}|g, ag, re, s:41]|g) In R b standard experience replay
Sample a set of additional goals for replay G = S(current episode)
for ¢’ € G do
r' o= r(s,a1,9)
Store the transition (s¢||¢’, aq. v/, 5444]l¢") In B > HER
end for
end for
fort = 1. Ndo

Sample a minibatch B from the replay buffer R
Perform one step of optimization using A and minibatch B
end for
end for

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P, ... & Zaremba, W. (2017). Hindsight experience replay. Advances in neural 68

information processing systems, 30.



SUbgoal Synthesis via Image Editing (SuSIE)

“put the orange crayon in the wooden bowl!”

Finetune InstructPix2Pix

S i — “Given language instruction

Generate| MExecute PonemenidO d t ob £

¥ and current observation,
predict some image that is k

steps away.”

senerate Generate

SRExecute

“put the black marker in the metal pot”

Black, K., Nakamoto, M., Atreya, P., Walke, H., Finn, C., Kumar, A., & Levine, S. (2023). Zero-shot robotic manipulation with pretrained image-editing diffusion
models. arXiv preprint arXiv:2310.10639.
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SUbgoal Synthesis via Image Editing (SuSIE)

Task LCBC MOO UniPi RT-2-X SuSIE (Ours)
Eggplant on plate 0.9 0.4 0.0 0.3 1.0
Carrot on plate 0.4 0.3 0.0 0.6 0.9
Scene A Eggplant in pot 0.6 0.7 00 0.4 0.7
Average 0.63 0.47 0.0 0.43 0.87
Bell pepper in pot 0.1 0.0 0.0 0.0 0.5
Scene B Bell pepperinbowl 0.3 0.1 0.1 0.0 0.5
Average 020 005 005 0.00 0.50
Toothpaste in bowl 0.0 0.0 0.0 0.5 0.6
Crayon in bowl 0.0 0.0 0.0 0.9 1.0
Scene C  Spoon in bowl 0.1 0.3 0.1 0.7 0.9
Bowl to top 0.6 0.1 0.1 0.9 1.0
Average 0.18 0.10 0.05 0.75 0.88

Black, K., Nakamoto, M., Atreya, P., Walke, H., Finn, C., Kumar, A., & Levine, S. (2023). Zero-shot robotic manipulation with pretrained image-editing diffusion
models. arXiv preprint arXiv:2310.10639.
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Language Condition

Two line of thoughts

1. Fuse language + vision, policy learns from the shared

latent
a. RT-1
b. Early Fusion VLA
2. Multi-modal sequence modeling / VQA:

a. Gato

b. RT-2

c. OpenVLA
d. LLarva

3. Both Language + Goal
a. Octo
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Robot Transformer

.......

py
--
.

o

Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale.”

arXiv preprint arXiv:2212.06817 (2022).
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https://docs.google.com/file/d/1LATB4Oc01HWRUq2CWKBDjTCbM8fmJe0c/preview

Robot Transformer
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Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale.”

arXiv preprint arXiv:2212.06817 (2022).

Not tokenized images (Extracted by EfficientNetB3)

Training Data
e Truined on 130k tele-operation demonstrations over 13 robots and 744 tasks.
Sl Coust  Descripoon Erample Imtraction
PRk Ob Jeot o L the object off the serface PR oo s o
Move Ob ject New Ob ject w? Move B¢ fint objoct near fhe second move popai can near exbar blacherry
Place Cb Jece Uprighn ] Place an eloogatad objoct uprign place water botile upright
Knock O dect Over s Kaack an clongased obyoct over knock podbu® cam over
Open [ Qlone Drawer 6 Open or chone sy of the cabiact drawen open the top deawer
Place Cb ject Isto Receptacle M Place an obyect Ino 2 receptache place bovwn chip bag it whate dowl|

Pk Ob ject from Receptacie 162 Pk an object up from a Jocasos and then pick groen jalapeno chip bag from paper
aedd Place on the Couster place & on the couster Bowl and place on coconer

Addticnal tasks . Skilh d for realiatic, boog pell aaphin out of disp

Tosal e}

Evaluation Data

e Evaluated on real-world randomized scenes and over 3000 total rollouts in the
environment it was trained on as well as two new office kitchen environments,

Model Seen Tasks Umseen Tasks Distracions Back grownds
Clato (Rood et ol N22) 68 2 4 3

BOZ (Jang et al, XQ0) n 3] o 4
BC-Z XL 56 4% 2 as
RT-1 (ours) 9 ™ 0 5

L LR
» e

il h hli'

Beew Tt Uaee Taid  Dumaiien  Badhpawnie
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Early Fusion VLA

Do you really have to relearn
language vision alignment
with FiLM?

CLIP already knows that!

+ CLUP Vison Encoder
'
Key

S° " sssaes

3 II.I
2
: . | II.
= [ —
v e v s
i ° 2 -
575 ‘.
: b i ll 2
- In
5 -
: msmmss]| o

Fused Features

1S "
.lli'..

Frozen CLIP X,

Blue

Red

Pink

Cube

Ball

Bowl
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Early Fusion VLA

Do you really have to relearn
language vision alignment
with FiLM?

CLIP already knows that!

l

Frozen CLIP X,




OpenVLA

Action generation as VQA!
Use Prismatic VLA, but finetune to generate action.

OpenVLA [ Action De-Tokenizer]—l
t ot ¢ A
'3 O3 — Af
Llama 2 7B AGrip
! § - 7D Robot
input Image ' Action

?j t ottt f = * ¥ 1 s
‘ MPPojector | [ |lama Tokenizer |

“Put eggplant gt .
o | Spmove 1

= 4 }

Language Instruction

+ “What should the robot do to {task}? A"

Kim, M. J., Pertsch, K., Karamcheti, S., Xiao, T., Balakrishna, A., Nair, S., ... & Finn, C. (2024). OpenVLA: An Open-Source

Vision-Language-Action Model. arXiv preprint arXiv:2406.09246. 76



OpenVLA

”'u;
:u 2.0
oo
Moton et

on Propsics Gensrpbzation  Semertic Camer on Larguags

Vausl Carwralrgton

)-—|--;-nx ALy | vc-um S

fmamen. chpm pwive & Pt choeet waws & W) by e rina S _-’.'

—RT1X e A e 3 concegns o e et

- Octo

: g’o::-\AIca )

:‘n':"mw R e Pt Ugrgre :::.u“ ?3."0‘.3.

Strategy Success Rate  Train Params (x10°) VRAM (batch 16)
Full FT 69.7 + 7.2 % 7,188.1 163.3 GB*
Last layeronly 303 +£6.1% 465.1 51.4GB
Frozen vision 47.0 £6.9 % 6,760.4 156.2 GB*
Sandwich 62.1 £79% 9142 64.0 GB
LoRA, rank=32 68.2 +7.5% 97.6 59.7 GB

rank=64 68.2 + 7.8% 195.2 60.5 GB
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Advantages and disadvantages of the two
approaches
1. Fuse language + vision first, policy learns from the shared latent
a. Advantage:
i. if done correctly, you can use the power of pre-trained VLM
ii. Can be super fast and lightweight
b. Disadvantages:
i.  no multimodal reasoning capability, as it only predicts action ->
needs an alternative model to perform planning
2. Multi-modal sequence modeling / VQA:
a. Advantages:
i.  Multi-modal reasoning capability, potentially can perform
planning along with action generation
b. Disadvantages:
i.  Slow! To have stronger planning capability -> bigger model ->
slower inference / cloud compute needed (increase latency)
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Why do we not want to use language / goal observations?
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Startiné Condition

Goall Image

“Pick up parcel, go through the scanner and place it on the shelf”

80



Language Condition: “Hand me the steak and move away from the wine glasses”

Generated by DALLE



Poke the red cube and move back
to the starting position

Current Observation

%ﬂ'ﬁ(‘z}}/

Did the Task
Complete?

Goal Observation



Poke the red cube and move back
to the starting position

What's the
task?

Goal Observation




In-context robot transformer

Framework

Human Demonstration as Prompt

Robot in-context learning by next-token prediction on sensorimotor
trajectories (no fine-tuning)

Input: raw human teleoperation trajectories

Output: real-time continuous control
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In-context robot transformer

Framework Sensorimotor Prediction Ablations
L]
Hurmen Demoms-ation a8 Prompt t L Pick and Place Poke Average
2 Mm'w"v - bl i i ICRT-Llama2 433 (£7.9) 733 (£8.2) 583 (£6.0)
» In-Context Leaming T ICRT (DROID) 00 (£00) 00 (£00) 0.0 (+0.0)
2 P T L Treren . ICRT (MT) 76.7 (£7.1) 70.0 (£8.5) 73.3 (£5.5)
Novtr awomre B BB N g E R R ICRT +PromptLoss 217 (£62) 233 (£7.9) 225 (25.0)
~ICRT 65.0 (£73) 933 (£4.6) 79.2(£4.6)
Robot in-context learning by next-token prediction on sensorimotor Sequence length: 512 steps from many trajectories of the same task . o
trajectories (no fine-tuning) Loss: L1 loss on the post-prompt trajectories, no loss on the prompt Single Stage Training Control Frequeqcy
Input: raw human teleoperation trajectories Pre-trained on Droid: 4 epochs, Fine-tuned on ICRT-MT: 125 epochs ... Fdawdlae  Poe A '"fm'_;‘;_(:';::'“m’
Output: real-time continuous control JoRY §50(£73) 93 (446) 792 (246 ICRT-Llama2 10.7 Hz
Inference

Different Prompts for Inference

0%

Dataset Task: Pick up the Radish and Put in the Gray Bowl
T T D Gl TR s T W e T Pl
? $0%

ICRT-Multi-Task (ICRT-MT) Dataset: a SRR ) i 2 T SwoowRue | 6% e o

- 1098 trajectories

- 6 motion primitives.
+2k trajectories from DROID for G i m AEE 7
pre-training. . g. N & nﬁ

- 29 tasks In-Context Robot Transformer Prompt Trajectories

Human Tole-operatod Demonstration as Prompt Now Ernieonment Arrangament Rolout
Results
Pick and Place Poke Average
Goal Condition 33.3 (£6.5) 6.7 (£4.6) 200 (+4.3)
Octo [15] 5.0 (£2.7) 13.3 (£6.2) 9.2 (£3.5)
OpenVLA [14] 11.7 (+4.6) 3.3 (£3.3) 7.5 (£2.9)
ICRT 65.0 (+7.3) 93.3 (£4.6)  79.2 (£4.6)

*30 trials per primitive and 60 trials overall. Reported average (standard error)
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In-context robot transformer

Sensorimotor Prediction Inference
e e
L e ' : :
M'm - ! * . - ! - " ' . L .
% - S R CCR ! . : ' ' s
g Wimcim oW II £ - f- c’i N B
'N-:l Preprio o pr—t? 7 : ‘
: LR R R B
Sequence length: 512 steps from many trajectories of the same task Sl %
Loss: L1 loss on the post-prompt trajectories, no loss on the prompt Momn Tele cpasted Ouroraeten s Peomes PV —r——
Pre-trained on Droid: 4 epochs, Fine-tuned on ICRT-MT: 125 epochs Pick and Place Poke Average
ICRT-Llama2 433 (279) 73.3(£82) 583 (£6.0)
ICRT (DROID) 0.0 (£0.0) 0.0 (£0.0) 0.0 (£0.0)
Resu ItS ICRT (MT) 767 (£7.0) 700 (£85) 733 (£55)
ICRT +Prompt Loss 217 (£62) 233 (£79) 225 (+5.0)
Pick and Place Poke Average ICRT 650 (£73) 933 (E46) I (E46)
Goal Condition 33.3 (£6.5) 6.7 (£4.6) 20.0 (£4.3) Single Stage Training Control Frequency
Octo [15] 50(F27) 133 (£62) 92(E35) o mcme me aee hoe Fre
OpenVLA [14] 11.7 (£4.6) 3.3 (£3.3) 7.5 (£2.9) T GOOTN W6 TR (A8 CKT Ll 107 He
ICRT 65.0 (+7.3) 933 (+4.6) 79.2 (+4.6)

Different Prompts for Inference

Proept Type | No Disteactor Ove Diwracar  Ditracar ﬂa.m'lwhuwu Theee Prowpes
Soccoss Rave | 0% s o o 86




In-context robot transformer
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https://docs.google.com/file/d/1DSRDDSv08qOnfEyiwkXu_i1_6xiCugpg/preview

Ill. Limitations of End2End and Future
works

- Advantages

Low latency, close loop control
Easy to teach a single task

- Disadvantages

Task has become a lot simpler (unless we consider single task learning,
with a lot of data)
If dataset is formulated incorrectly, may suffer from overfitting and
doesn't generalize
Control is less precise, not interpretable
Where is the data?

- Find VC, pitch them data collection

- Scaling in simulation

- Learning from human video data
What are the basis vectors of human / robot motion? How to compose
them?
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End
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il "I

Rapidly growing market

Why robotics?

Ehe New HJork Eimes IEEE SPOCLILET o o o s

- pae

~ :
Tesla to Recall . ,._Years Later.AlphabetsEverydayRobo(sllaveMade
‘Full Self Drivinl#¥ * i Some Progress ‘Do 100~ m gy : |

= that Evervday Robots are iney
[ —

ots Are Coming to
Construction Site

DHL becomes first to install
Boston s’ Stretch
robot to unload trucks

The world is full of autonomous systems!
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Why robotics?

Why should students in a vision-language seminar care about robotics?

Students in a vision-language seminar should care about robotics because Robotics is an

excellent application area for vision and language research. The development of intelligent

robots requires the integration of multiple technologies, including computer vision and

natural language processing, making it a compelling area of research for students

interested in vision and language.
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Why robotics?
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http://www.youtube.com/watch?v=-e1_QhJ1EhQ&t=53

Moravec's paradox

- Hans Moravec, Rodney Brooks, Marvin Minsky:

- "“Reasoning requires very little computation, but
sensorimotor and perception skills require
enormous computational resources”

- “Itis comparatively easy to make computers
exhibit adult level performance on intelligence
tests or playing checkers, and difficult or
impossible to give them the skills of a
one-year-old when it comes to perception and
mobility"




Why is robotics challenging?
How is robotics different from vision and language?

- How to create a system that perceive and
interacts with the environment?

- Where's the data and what data is available?

- Correspondence (observation, action, goal?)

- Designing good optimization problems?

- Is the system safe? Easy to use?

96



Today ...

- Focus on robotics manipulation
- Sensing vs Task & Motion Planning
- Three sections

- Robotics and Vision

- NLP and Decision Making

- Unify them all
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. Robotics and Computer
Vision
- Scaling Data
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1.1 Scaling Data

- Through Simulation
- Through Real World Data
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Case Study 1: DexNet 2.0

Initial State | Executed Grasp

Trained Model of

ids Grasp Robustness
Input Depth Image Candidates

Mahler, Jeffrey, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. "Dex-net
2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics." arXiv preprint arXiv:1703.09312 (2017).



Case Study 1: DexNet 2.0

3D Object Meshes Robust Parallel-Jaw Grasps Grasp Image Dataset (6.7 Million)

Positive

Rendered Depth Images

1,500 3D object mesh models

Mahler, Jeffrey, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. "Dex-net
2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics." arXiv preprint arXiv:1703.09312 (2017).



Case Study 1: DexNet 2.0

Aligned Image Grasp Quality CNN

Grasp Candidate

é # )| Point Cloud

” -

G 0T U 50 Mow Pt o ) Coe ) ity Ol
it M I ST AT O Onage

1w ¢ oy b
o Ny

Comparions of Methods

| Randon | 160 | MLRE | SV | REG | GOL-Aw

Success Rate (%) = 58+11 70£10 | 7549 80+9 9545 | 9346
Precision (%) N/A N/A 100 100 N/A 9%

Robust Grasp Rate (%) N/A N/A 5 0 N/A 43
Planning Time (sec) N/A 1.9 0.8 09 26 0.8

Mahler, Jeffrey, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. "Dex-net
2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics." arXiv preprint arXiv:1703.09312 (2017).



Case Study 1: DexNet 4.0

‘I a
D ex- N et a O ] Mahler, J., Patil, S., Kehoe, B., Van Den Berg, J., Ciocarlie, M.,

Abbeel, P., & Goldberg, K. (2015, May). Gp-gpis-opt: Grasp
planning with shape uncertainty using gaussian process implicit

Learning Am bidextrous Robot G rasping Policies surfaces and sequential convex programming. In 2015 IEEE

international conference on robotics and automation (ICRA) (pp.
4919-4926). |IEEE.

7
A“I“ = Penimeter

. Mahler, Jeffrey, Matthew
== Flexion ’ Matl, Xinyu Liu, Albert Li,
w= Cone ' David Gealy, and Ken
- - " .
Science Robotics Journal 2019 Goldberg. ‘Dex-net 3.0:

Computing robust
berkeleyautomation.github.io/dex-net

vacuum suction grasp
targets in point clouds
using a new analytic
model and deep

Initial State learning." In 2018 IEEE
International Conference
on robotics and
automation (ICRA), pp.

£ : ; 5620-5627. IEEE, 2018.
Conmtact State

&7,
£


http://www.youtube.com/watch?v=r-0PKne9e_w

Case Study 2: EvoNeRF (aka DexNeRF 2)

OFull trajectory: 16 sec
QO Update trajectory: 4 sec

(a) Full Capture Tra]ectory (c) Update Trajectory (d) Consecutive NeRF Updates

Kerr, Justin, Letian Fu, Huang Huang, Yahav Avigal, Matthew Tancik, Jeffrey Ichnowski, Angjoo Kanazawa, and Ken Goldberg. "Evo-NeRF:
Evolving NeRF for Sequential Robot Grasping of Transparent Objects." In 6th Annual Conference on Robot Learning.



Case Study 2: EvoNeRF (aka DexNeRF 2)

Grasps Generation

Simulated NeRF
Grasp Dataset

Blender Rendering Instant-NGP Training Depth Rendering

GT-Net achieves 0 %, Rad-Net achieves 42 %, and Dex-Net achieves 0.1%, suggesting that there is a
large distribution shift from training on ground-truth depth to testing on NeRF-depth in simulation.

Kerr, Justin, Letian Fu, Huang Huang, Yahav Avigal, Matthew Tancik, Jeffrey Ichnowski, Angjoo Kanazawa, and Ken Goldberg. "Evo-NeRF:

Evolving NeRF for Sequential Robot Grasping of Transparent Objects." In 6th Annual Conference on Robot Learning.
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https://docs.google.com/file/d/1wHoOS8YfDZiZBelrXERG9sy8wCY_MNMI/preview

1.1 Scaling Data

- Through Simulation
- Through Real World Data
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Case Study 3: Supersizing Self-supervision

= |3 E i
LSS .‘_S 1 | .
» v <a — o o -
- n o SR
o - :
|
\.

50K data points collected over 700 hours
(Before DexNet)

Pinto, Lerrel, and Abhinav Gupta. "Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours." In 2016 IEEE
international conference on robotics and automation (ICRA), pp. 3406-3413. IEEE, 2016.



Case Study 3: Supersizing Self-supervision

GRASP DATASET STATISTICS

Random Trials 37,042 | 40,287 8.05%
Multi-Staged 2,807 7,307 38.41%
| TestSet | 214 | 2759 | 2973 7.19%

6266 | 44301 | 50,567

COMPARING OUR METHOD WITH BASELINES

Heuristic Learning based
Min Eigenvalue Optimistic KNN  SVM Deep Net  Deep Net + Multi-stage
eigenvalue limit param. select (ours) (ours)
Accuracy 0.534 0.599 0.621 0.694 0.733 0.769 0.795

Pinto, Lerrel, and Abhinav Gupta. "Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours." In 2016 IEEE
international conference on robotics and automation (ICRA), pp. 3406-3413. IEEE, 2016.




Case Study 4: Equivariant Model

s
Can we scale more efficiently with online vision data? 9 q
. o

q1(gs)

T gp T Nk
q2(crop(s, x))

Crop( s,

= @
(s, z) @2 (7(s,z))

w
lgo e Preg(90)

~

= @ ?T.,,':‘—" T
@2(gocrop(s, z))

Fig. 1. Illustration of the ASR representation. (0, selects the translational
component of an action, Q2 selects the rotational component.

Zhu, Xupeng, Dian Wang, Ondrej Biza, Guanang Su, Robin Walters, and Robert Platt. "Sample efficient grasp

learning using equivariant models." arXiv preprint arXiv:2202.09468 (2022). ggcrop(a, 't)




Case Study 4: Equivariant Model

(b) Testing set, easy (c) Testing set, hard

— OUrS
~—— 8x RAD FC-GQ-CNN
— 8x RAD VPG

C
~

[

200 300 400 500 5 O Riaer o oy
number of grasps (a) Training (b) Testing

Zhu, Xupeng, Dian Wang, Ondrej Biza, Guanang Su, Robin Walters, and Robert Platt. "Sample efficient grasp
learning using equivariant models." arXiv preprint arXiv:2202.09468 (2022).



After 2/3 of training

Grasp trials: 4082
Success rate*: 8.780
Training time: 1:06:26

*Average over last 50 grasps.
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http://www.youtube.com/watch?v=0jaHpz3KQ7I&t=4

Case Study 5: MVP

31
1]
(2) masked visual pretraining

Xiao, Tete, llija Radosavovic, Trevor Darrell, and Jitendra Malik. "Masked visual pre-training for motor control."
arXiv preprint arXiv:2203.06173 (2022).



Case Study 5: MVP

In-the-Wild Data Masked Autoencoder Real-World Robotic Tasks

Over 4.5 million images (a) Masking (b) Autoencoder Two robots (xArm, Allegro hand)
Five diverse data sources - _ Eight tasks (scenes, objects)

Radosavovic, llija, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell. "Real-world
robot learning with masked visual pre-training." arXiv preprint arXiv:2210.03109 (2022).



Case Study 5: MVP
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Radosavovic, llija, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell. "Real-world
robot learning with masked visual pre-training." arXiv preprint arXiv:2210.03109 (2022).




Case Study 5: MVP

—
R
—
v
v
@
W
w
pe
v

Success (%)

n 0o 25 15 100 1235 150 00 5 50 15 100 1235

a [ 50
Env, Steps (M) Env. Steps (M) Env. Steps (M)

Radosavovic, llija, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell. "Real-world
robot learning with masked visual pre-training." arXiv preprint arXiv:2210.03109 (2022).
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https://drive.google.com/file/d/1V-iE98PuVKD3JMNnDiN0AdPgcUMPqepD/view?usp=sharing
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Move into the living
room. Go forward
then face the sofa.
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N — B — "
° L °
° ° °
\ | R 4 5.
.4 AR | W |

go_forward turn_left turn_left go forward turn_right
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Why is this hard?
Move into the living room. Go forward then face the sofa.
People don’t talk about low-level actions!

Trying to learn 1t directly means simultaneously learning how
words relate to goals and how goals specify actions.

Can we separate the two?

122



Why might mapping words to goals be easy?

Instruction givers are cooperative, instructions optimized to
be understandable (subject to constraints).

Language is well-suited (optimized?) for communicating the
kinds of goals that people care about.
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Insights from linguistic semantics:

1. The meaning of a sentence is a function from possible
worlds to truth values.

.e “the blue ball is next to the open red door” is a boolean
function that inspects the current state of the world...

2. Sentence meanings / functions are built compositionally
from sentences themselves.

a) Utah Idaho b) states border Texas
NP & \ N l{) /NP NP (S/&S\Nl’))/N &S\N P)/NP NP
utah Az.Ay.borders(y,xz) idaho AfAg Az f(z) A g(z) Az vtat('(;r) Az.Ay.borders(y, x) texas

(S\NP) % S/(S\NP) (S\NP) ¢
Ay.borders(y, idaho) Ag.Az.state(z) A g(x) Ay.borders(y, texas)
S . S
borders(utah, idaho) Az.state(z) A borders(z, texas)

Tarski, Alfred. "Der Wahrheitsbegriff in den formalisierten Sprachen." Studia philosophica 1 (1936).
Montague, Richard. "The proper treatment of quantification in ordinary English." In Approaches to natural language: Proceedings of the 1970 Stanford workshop on

grammar and semantics, pp. 221-242. Springer Netherlands, 1973.
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Mapping Instructions to Actions

(a) chair

Az chair(r)
() hall

Az hall{r)
(¢) the chair

wr ohair(z)
(d) you

you
(0) bdse hall

Az hall(x) A Nuelz)
() chair in the miersection
Az.chair(z) A
intersect 4y Jamction(y), x)

() = froet of
{° ° .} 2 :l.m.!u:l“o](m,:)

maxp(C, |7, s) o p(7|C)pe(C|s)p(6)

Learning a function from strings to goal predicates using task completion
as feedback

Jointly Optimize for the Cost function + LM

C: Example specific cost function

0: language understanding model Inferring plans from natural language commands
T: dataset of trajectories

s: instruction

()P & on e rck

Artzi, Y. and Zettlemoyer, L. (2013). Weakly supervised learning of semantic parsers for mapping instructions to actions. Transactions of the Association for Computational Linguistics, 1:49-62.
Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee, A. G., Teller, S., and Roy, N. (2011). Understanding natural language commands for robotic navigation and mobile manipulation. In
Proceedings of the Twenty-Fifth AAAI Conference on Atrticial Intelligence, AAAI'11, page 1507—1514. AAAI Press.



Il. Language and Decision

Makin
: Lang%age as a medium for task

specification -> learn vision models to
check constraints!
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Case Study 6: Spatial Object-Centric
Representations for Sequential Manipulation
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Only unary and binary relations

Yuan, Wentao, Chris Paxton, Karthik Desingh, and Dieter Fox. "Sornet: Spatial object-centric representations for sequential manipulation." In Conference on Robot Learning, pp. 148-157.
PMLR, 2022.



Case Study 6: Spatial Object-Centric
Representations for Sequential Manipulation

on_serfsceligreen block, let) on_serfacelred block, rgnt)
ob_wriateired Biock, nght) . 0N _swrface{yehow block, fght)
0N _swrtaceired_blacs, W) . 3 W0__Cloariied_Biah)

0n_surfacelyslion block, center) o’ 20 s Cesnbiue block)
fop_u_clearired block) N , Machedired Slock, green block)
Wp_n_cClaaribhee_biock) ; SIAChEd grees Baock, Diue biack)
1op_n_clear yetow _biock) . . ; wackadipeliow Block, green Block)
N_Approach reglonirobot. red Bock)

Sauadigreen Dhach, Dhoe B )

How to use this?
1. Generate a state vector based on SORNet
2. Atask and motion planner takes the state vector and desired goal (formulated as a list of
predicate values to be satisfied, i.e. goto, grasp, etc.)
a. Outputs a sequence of primitive skills

Yuan, Wentao, Chris Paxton, Karthik Desingh, and Dieter Fox. "Sornet: Spatial object-centric representations for sequential manipulation." In Conference on Robot Learning, pp. 148-157.
PMLR, 2022.



Case Study 6: Spatial Object-Centric
Representations for Sequential Manipulation

Method  ResNetl8  ResNetI8 (MV)  ResNetl8(P)  CLIP-ViT  CLIP-ViT(P) SORNet (P)  SORNet (P MV)

Obj-Obj 0.4308 0.6068 0.9876 0.9875 0.6145 0.1679 0.1458
EE-Obj 0.3251 0.3464 0.5929 0.6544 0.4960 0.1962 0.1777

Table 4: Euclidean error on regression of continuous 3D unit vector between entities in the scene. The regres-
sors are trained on 1000 examples with unseen objects. Methods labeled with P are pretrained on the Leonardo
dataset. Methods labeled with MV use 3 views.

*Can also do viso-servoing:

1.  Trained a regressor on top of frozen SORNet embeddings to predict the continuous
direction between two objects (Obj-Obj) or the direction the end effector should move to
reach a certain object (EE-Obj)

2. Use the distance as the objective to guide the robot to reach a target object

Yuan, Wentao, Chris Paxton, Karthik Desingh, and Dieter Fox. "Sornet: Spatial object-centric representations for sequential manipulation." In Conference on Robot Learning, pp. 148-157.
PMLR, 2022.



l1l. Unify Robotics, Vision, and NLP

- Understanding Semantics with CLIP
- Language models as planners
- Unify it all?

130



Case Study 7: CLIPORT

N N
M BB KA R AR

“dlign the rope from back "packthe hexagon "put the green lotter £ in the “put the blue blocks “pack oll the yellow and blue
fight comet to back left cormer’ i the brown box" right letter € shape hole" (na green bow!' blocks in the brown box'

“pack the yoshi figure "pack all the blue and black sneaker "put the blue block "push the plle of purple blocks ‘mave the green fing Trained from demonstration
inthe brown box' objects In the brown box" on the llghtest brown block’ Into the green square’ 0 the darker brown side”

Shridhar, Mohit, Lucas Manuelli, and Dieter Fox. "Cliport: What and where pathways for robotic manipulation." In Conference on Robot Learning, pp. 894-906. PMLR, 2022.
Zeng, Andy, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis Armstrong et al. "Transporter networks: Rearranging the visual world for robotic
manipulation." In Conference on Robot Learning, pp. 726-747. PMLR, 2021.


https://docs.google.com/file/d/1KvXN3XrogtoOPAQm59e9k8mSHKIRctfX/preview
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Case Study 7

For pick-conditioned placing (c), deep feature template matching occurs with a local crop
around the sampled pick as the exemplar. Rotations of the crop around the pick are used
to decode the best placing rotation.

Shridhar, Mohit, Lucas Manuelli, and Dieter Fox. "Cliport: What and where pathways for robotic manipulation." In Conference on Robot Learning, pp. 894-906. PMLR, 2022.
Zeng, Andy, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis Armstrong et al. "Transporter networks: Rearranging the visual world for robotic
manipulation." In Conference on Robot Learning, pp. 726-747. PMLR, 2021.



Case Study 7: CLIPORT

FC Domwanngling A Thag (8 Wutply @ 101 Cony fudion @ Add for Pck | 141 Canw for Place * Softmus Sor Ak | Ooss-Canwlation A Solmas e Macs

QL ResNety) Froven

bawes in the brown box™

Trarsporter ReaNet fUstrined)

We consider the problem of leaming a goal-conditioned policy m that outputs actions a, given input
7 = (0. 1;) consisting of a visual observation o, and an English language instruction 1,:

m(ye) = m(0, 1) =+ a¢ = (Toick, Tpie) € A (N

Shridhar, Mohit, Lucas Manuelli, and Dieter Fox. "Cliport: What and where pathways for robotic manipulation." In Conference on Robot Learning, pp. 894-906. PMLR, 2022.
Zeng, Andy, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis Armstrong et al. "Transporter networks: Rearranging the visual world for robotic
manipulation." In Conference on Robot Learning, pp. 726-747. PMLR, 2021.



Case Study 8: ConceptFusion

Multi-modal concepts mapped from 2D into 3D (i.e. point clouds)

Open-set
Multimodal
3D Maps

Jatavallabhula, Krishna Murthy, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh lyer et al. "ConceptFusion: Open-set Multimodal 3D Mapping." arXiv preprint
arXiv:2302.07241 (2023).


https://docs.google.com/file/d/1oslDbDzlQZ7I6XbSEEhtCVfWyQQaRfQa/preview

Case Study 8: ConceptFusion

& Ma2Former
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Jatavallabhula, Krishna Murthy, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh lyer et al. "ConceptFusion: Open-set Multimodal 3D Mapping." arXiv preprint
arXiv:2302.07241 (2023).



Case Study 8: ConceptFusion
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Jatavallabhula, Krishna Murthy, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh lyer et al. "ConceptFusion: Open-set Multimodal 3D Mapping." arXiv preprint
arXiv:2302.07241 (2023).



Case Study 8: ConceptFusion

& Ma2Former
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Jatavallabhula, Krishna Murthy, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh lyer et al. "ConceptFusion: Open-set Multimodal 3D Mapping." arXiv preprint

arXiv:2302.07241 (2023).
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and yellow lines). For each set of objects, a goal instruction
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l1l. Unify Robotics, Vision, and NLP

- Understanding Semantics with CLIP
- Language models as planners
- Unify it all?

139



Case Study 9: SayCan

| spilled my drink, can you help? | spilled my drink, can you help?

You could try using
a vacuum cleaner.

| would:

1. find a sponge

2. pick up the sponge
3. come to you

4. put down the sponge
5. done

Do you want me to
find a cleaner?

I'm sorry, | didn't
mean to spill it.

/
|
|
|
'
|
|
|
|
|
'
!
|
|
'
\

Problems: (1) task-grounding (i.e., a skill language description) and (2) world-grounding (i.e.,
skill feasibility in the current state).

Solution: (1) Image based behavior cloning for each skill

(2) train affordance functions: a particular skill -> success probability in the current state

Ahn, Michael, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn et al. "Do as i can, not as i say: Grounding language in robotic affordances." arXiv
preprint arXiv:2204.01691 (2022).



Case Study 9: SayCan

Instruction Relevance with LLMs Combined

Find an apple
Find & coke
Find a sponge
How would you put
an appie on the Pick up the apple
lable? Pick U the coke

Place the apple
Place tha coke
Go to the table
Go 10 the countor

I would: 1. Find an apple, 2.

Skill Affordances with Value Functions

08
06 \
06 \

02
02

Probability of a language description of a skill 1
01 making progress towards executing the instruction i
0.1

08

08-/

™ = a'rgma*xﬂ'el'lp(cwlsa eﬁ)p(eﬂ'l

|—>0v LLM < > V¥ Probability of completing a subtask

conditioned on the current state (aka
affordance)

Ahn, Michael, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn et al. "Do as i can, not as i say: Grounding language in robotic affordances." arXiv

preprint arXiv:2204.01691 (2022).
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https://docs.google.com/file/d/1PhXTc9_CSItjwaoBx2Kw1MzzKra8XIeg/preview

Case Study 9: SayCan

BC training. We use 65000 teleoperated demonstrations that were collected over the course of 11

months using a fleet of 10 robots. The operators use VR headset controllers to track the motion of

their hand, which is then mapped onto the robot’s end-effector pose. The operators can also use a

® How much data and compute do you need? joystick to move the robot’s base. We expand the demonstration dataset with 276000 autonomous
i s of learned policies which are later success-filtered and included in BC training, resulting

in an additional 12000 successful episodes. To additionally process the data, we also ask the raters

Yes to mark the episodes as unsafe (i.c., if the robot collided with the environment), undesirable (i.c., if
the robot perturbed objects that were not relevant to the skill) or infeasible (i.e., if the skill cannot be
done or is already accomplished). If any of these conditions are met, the episode is excluded from
training,

The RL model is trained using 16 TPUv3 chips and for about 100 hours, as well as a pool of
3000 CPU workers to collect episodes and another 3000 CPU workers to compute target Q-values.

Ahn, Michael, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn et al. "Do as i can, not as i say: Grounding language in robotic affordances." arXiv
preprint arXiv:2204.01691 (2022).



Case Study 10: Inner Monologue
Robot Planning & Interaction Grounded Clocod -Loop Feedback

@ éaﬁywummmmnkmmmv @ @ @hmm«»

@ I see: coke, water, chocolate bar.
Do you want water or coke? @ ——

@ Coke please.
ACtion: "pick up the Coke

"pick up the coke"

; @ Action was not successful.

@ Actlon was successiul,

L bring it to you"

Introduce feedback!

Huang, Wenlong, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng et al. "Inner monologue: Embodied reasoning through planning with language models." arXiv preprint
arXiv:2207.05608 (2022).



Case Study 11: ConceptFusion revisited
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Can we improve grounding of general LLM?
Solution: provide more options and context!
(prompt tuning)
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Jatavallabhula, Krishna Murthy, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh lyer et al. "ConceptFusion: Open-set Multimodal 3D Mapping." arXiv preprint

arXiv:2302.07241 (2023).




l1l. Unify Robotics, Vision, and NLP

Language models as planners
- Unify it all?
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Case Study 13: A Generalist Agent

*
Can one model rule all? *Yes Model outputs a distribution over the next discrete token.
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Tokenize everything Invert the tokenization

*May not be the best performing agent in each subcategories yet.
Reed, Scott, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez et al. "A generalist agent." arXiv preprint arXiv:2205.06175
(2022).



Case Study 13: A Generalist Agent
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Reed, Scott, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez et al. "A generalist agent." arXiv preprint arXiv:2205.06175
(2022).



Case Study 14: RT1
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Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale."
arXiv preprint arXiv:2212.06817 (2022).


https://docs.google.com/file/d/1LATB4Oc01HWRUq2CWKBDjTCbM8fmJe0c/preview

Case Study 14: RT1

Not tokenized images (Extracted by EfficientNetB3)

Training Data
e Truined on 130k tele-operation demonstrations over 13 robots and 744 tasks.

Skl Coust  Descripoon Example Imtruction

Pk Ob Jeot o L the object off the sertace Pk ond tea can

Move Ob ject New Ob ject w Move B¢ fint objoct near fhe second move popai can near exbar blacherry
Place Cb Jece Uprighn ] Place an eloaganad object upright place water botile upright

Knock O dect Over s Kaack an clongased obyoct over knock podbu® cam over

Open [ Qlone Drawer 6 Open or chone sy of the cabiact drawen open the top deawer

Place Cb Ject Isto Receptacie M Place an obyect Ino 2 receptache place hovwn chip bag lnto white dow|
Pk Ob ject from Receptacie 162 Pick an object up from 3 Jocasos aad then pick groen alapeno chip bag from poaper
s Place o8 Be Counter place & on the couster Bowl aod place on coconer

Addtional tasks . Skilh ewined for realietic, boog imstrctions  pell aaphin out of dispesser
Tosal T

Evaluation Data

o Evaluated on real-world randomized scenes and over 3000 total rollouts in the
environment it was trained on as well as two new office kitchen environments,

@ T4 et
. oo
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Madel Seen Tasks Unseen Tasks Distractoes. Backgrosnds s o
Gato (Reodctal. M122) 68 52 s
BCZ (g ecal, X21) 72 I
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Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale."
arXiv preprint arXiv:2212.06817 (2022).



Case Study 14: RT1
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Results on Sim2Real Transfer Results on Mixed Dataset

“Classroom eval: “pick” and “move to” skills
Little degradation in performance on mixed dataset training

Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale."
arXiv preprint arXiv:2212.06817 (2022).
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Case Study 15: PaLM-E

A (540B PaLM+22B ViT) multimodal PaLM that do the following

Mobile Manipulation

PaLM-E: An Embodied Multimodal Language Model

Task and Motion Planning
Given <emb»> ... <img> Q: How 10 grasp blue block? A F

lerir bies Goven <emb> O How
? vIiT 4 First grasp yellow
! block and place it on
. ‘ the table, then grosp
sk the blue block.
Large Language Model (PalM)
Tabletop Manipulation

<lmg> 3 Pick (hegmennce Pl S
dupbngfromthedrawcfandplacenonm
counter.

A: First. grasp yellow block and
Visual Q&A, Captioning ...

p 1. Push the green
. star to the bottom left.
Language Only Tasks : Step 2. Push the green

circie to the green star,
g an U

QO Miami Baach bocders which o«
EMWNW Q:What Is 372 x 187 A: 6696,
models are the future of Lan

natural language be used to guide a robot’s actions.

T A Atlantic,

r data



Case Study 15: PaLM-E

The inputs to PaLM-E consist of text and (multiple) con-
tinuous observations. The multimodal tokens correspond-
ing to these observations are interleaved with the text
to form multi-modal sentences. An example of such a
multi-modal sentence is Q: What happened between
<img-1> and <img.2>? where <img.i> represents an em-
beddlngofanunage.'mm e

thn PaLM-E is lasked with produclng decnsnons or plans.
we assume that there exists a low-level policy or planner that
can translate these decisions into low-level actions. Prior
work has discussed a variety of ways to train such low-level
policies (Lynch & Sermanet, 2020; Brohan et al., 2022), and
we use these prior methods directly without modification.
In the following, we describe our approach more formally.

Visuslly - comibimmnd Jtas + Fom - sh graempiing  Sobod Vises' Pervapiion, Claiagam, and Plarwing . .
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Case Study 15: PaLM-E

B TAMP Sucosss (Table 1)
B Language-Table Success (Table 2) |
| SiyCan Aftordances (Tobie 4)

womo-w Lang Tabée Data Only  SayCan Data Only

Differunt modeds for tiflesent robots
\ )

Our three robot environments (Fig. 1) include a Task and

Motion Planning (TAMP) domain where a robot has to

manipulate (grasp and stack) objects, a table-top pushing
environment, and a mobile manipulation domain. In each

Downstream

1.
2.

3.

TAMP Simulation Controller
Interactive language: Talking to robots

in real time.
RT1



Case Study 15: PaLM-E

*p: prasping  Example prompt: Cives <ismg>. Q: How to grasp the green object?. Ta
get: A: First grasp the orange object and place it on the table, then grasp the
green object,

* py stacking. Example prompt: Given <img>, Q: Mow to stack the white object on top
of the red object?. Target: A: First grasp the green object and place it on the
table, then grasp the white object and place it on the red object.

O i

T e Te e ————
e ton: Trng e M Ao O More he eaer”

R e

TAMP Task

Table top pushing environment

RT1 Environments



Case Study 15: PaLM-E

B TAMP Sucosss (Table 1)
B Language-Table Success (Table 2) |
| SiyCan Aftordances (Tobie 4)

womo-w Lang Tabée Data Only  SayCan Data Only

Differunt modeds for tiflesent robots
\ )

Our three robot environments (Fig. 1) include a Task and

Motion Planning (TAMP) domain where a robot has to

manipulate (grasp and stack) objects, a table-top pushing
environment, and a mobile manipulation domain. In each

Downstream

1.
2.

3.

TAMP Simulation Controller
Interactive language: Talking to robots

in real time.
RT1



Case Study 15: PaLM-E

SayCan (oracle afford.) (Ahn et al.,, 2022)
Pall (m—sho() (Cben ct ll 2022)
PalM-E (ours) w/ input enc:

State J(GT)

. 8 903 B8.3 450 46,1
100.0 96.3 95.1 93.1 559 49.7
347 546 746 916 240 147

459 784 92.2 306 329

-« 707 934 92,1 74,1 146

. - 719 751
997 98.2 100.0 93.7 825 76.2

ixon 7ah TAMP Task

ViT+TL J(GT)
ViT-4B single robot X
ViT-4B full mixture X
OSRT (no VQA) v
OSRT v

SSNSSSS> NN

Zero-shot Baselines

SayCan (omacle afford.) (Ahn et al,, 2022)
Pall (Chen et al,, 2022)

trained
PalM.E. on 20 80

12B Single robot v 200 300 500 25 63 25 113 169 283
128 Full mixture X - - 200 - - 33
X
v

from LIEM+VIT LIM Task & Demos

scratch  pretrain - frozen finetune JO 20 40 10 20 40 O

12B Full mixture 800 - - 515§
128 Full mixwre

MM!0.0MJNNS‘LSWS(ﬁ
848 Full mixture %00 - - 38 - - 644

Table 2: Results on planning tasks in the simulated environment from Lynch et al. (2022).

Table top pushing environment

Task 1. Q: There is a block that is closest 10
{i.e., rop right corner}. Push that block 10
the other block of the same color.

Task 2. Q: How 1o sort the blocks by coloes

o coenerns?

Task 3. Q: How to push all the blocks that
are on the {lefi/right} side together,
without bringing aver any of the blocks
that are on the { rightleft) side?




Case Study 15: PaLM-E

Baselines Failure det.  Affordance

PaLl (Zero-shot) (Chen et al., 2022) 0.73 0.62

CLIP-FT (Xiao et al., 2022) 0.65 -

CLIP-FT-hindsight (Xiao et al., 2022) 0.89 -

QT-OPT (Kalashnikov et al., 2018) - 0.63

PalM-E-12B  from LLM+ViT LLM RT1 Environments

trained on scratch  pretrain  frozen
Single robot X 0.46

Single robot v 0.78
Full mixture v 0.87
Full mixture v 091




1.
1.
IV.

Robotics and Vision

Robotics and NLP

Unify it all?

Where does this leave us?
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Dex-Net 4.0:

Learning Ambidextrous Robot Grasping Policies

Science Robotics Journal 2019
berkeleyautomation.github.io/dex-net
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http://www.youtube.com/watch?v=r-0PKne9e_w&t=3
https://docs.google.com/file/d/1X0lEzwrTmIs6iOIdlhfWqXcqhT9pIpeY/preview

Low level stuff?

ChatGPT for Robotics:
Design Principles and Model Abilities

Sai Vemprala', Regerio Bonatti', Arthur Bucker , and Ashish Kapoor
Micrimoft Astonomous Systerms and Robatics Reseasch

This paper presents an experimental study regarding the use of OpenAl's ChatGIrT [1] for
robetics applications. We outline a strategy that combines design prisciples for prompt
engineering and the creation of a high-level fumction Hbrary which allows ChatGPT to adapt
to different robotics tasks, simulators, and form factors. We focus eur evaluations on the
effectiveness of different prompt engineering techniques and dialog strategies towards the
execution of various types of robotics tasks. We explore ChatGPT' ability to use free-form
dialog, parse XML tags, and 10 systhesize code, In addition to the use of task-specific prompting
functions and closed-loop reasoning through dislogues. Our study encompasses a range of
tasks within the robotics domain, from basic logical, geometrical, and mathematical reasoning
all the way to complex domains such as aerial navigation, masipulation, and embodied agents.
We show that ChatGFT can be effective at selving several of sach tasks, while allowing wsers to
interact with it primarily via satural language instructions. In addition to these studies, we
Intreduce an open-sourced research tool called PromptCraft, which contains a platform where
rescarchers can collaboratively upload and vote em examples of geod prompting schemes for
robotics applications, as well as a sample robotics simulator with ChatGIT Imtegration, making
it casier for users to get started with using ChatGPT fer robotics.

Robotics today: engimeer i the loop

A

% =

Goal with ChatGPT, user on the loop

FB-~ EEAW

#=Hl =T

| Uer on the lbop tevane | Loncute
OW::\M.NWT @ '

L’-—v- I
R ;/ :W *‘
.
- [
-
e e
i e e I
R I e . et e —‘i v

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, Ashish Kapoor. ChatGPT for Robotics: Design Principles and Model Abilities. MSR-TR-2023-8, Microsoft (2023).



Can we scale efficiently?
And how much data?

on Everyday Hooots

Grasps Generation

By ooy data colecied

el

Blender Rendering Instant-NGP Training

Sim2Real Real2Real

Kerr, Justin, Letian Fu, Huang Huang, Yahav Avigal, Matthew Tancik, Jeffrey Ichnowski, Angjoo Kanazawa, and Ken Goldberg. "Evo-NeRF: Evolving NeRF for Sequential Robot Grasping of Transparent Objects." In 6th Annual Conference on Robot
Learning.

Ho, Daniel, Kanishka Rao, Zhuo Xu, Eric Jang, Mohi Khansari, and Yunfei Bai. "Retinagan: An object-aware approach to sim-to-real transfer." In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 10920-10926. IEEE, 2021.
Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan et al. "Rt-1: Robotics transformer for real-world control at scale." arXiv preprint arXiv:2212.06817 (2022).
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CLIPort

What and Where Pathways for Robotic

Manipulation
e Conference on Robot Learning, 2022.

e Authors: Mohit Shridhar, Lucas Manuelli, Dieter Fox
e Presenter: Yatong Bai

FC Dowranngling AThag (8 Vgl @ 101 Conw funion A3 for Pk | 1) Carw for Place * Sotmus Sor M | O Canvlation A Sobfymas e Mace

CLP ResNet Froven e

>--

} peay [
% U ? ) : = '. - ~

2 { N ) ' P

2 ‘ - »-d ! ll' 2
E ( )\ ' : y ! ) FOS |
A Gl S Jee FEES Ta7x2048

[

RGB ——
CUF Serterce
Hx'wid Encoder (T rapen) Affordance
]
pack alf the blue and yefiow m_‘ HxWx1
bees in the brown box” |
1024
23
Q &
¥
» Trarsporter ReaNet fUstrained)
RGB-D Dense Features

HodWind bocWhad
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CLIPort

Task: Language-conditioned object manipulation.
e An imitation learning task.

e Idea: try to mimic an expert via supervised learning.
Inputs:

e Avisual observation (RGB and depth, shape HxWx4) o,
e Alanguage instruction L.

e. g. pack all blue and yellow boxes in the brown box. - -
Outputs:

e PickinglocationT . .;
pic
e Placinglocation T, .
place

“pack the hexagon “put the gray letter E in the

in the brown box” left letter E shape hole”



Architecture of CLIPort

Three Fully-Convolutional-Networks (FCNs):

e Pick FCN: fpick: (Ot’ lt) — Qpick' m:::::'“ @y '"'w"::::-m'--mw-- St b P o oo St s Pl
o Qpick is HxWx1. Tpick: argmaxlocationQpick.
e Query FCN: (unery: (Ot[Tpick]’ 1) — Qquery. i o
o o[T, lisacxccropofo centeredat T . pckallthe e andyelow 222220
o Qquery iS cxex3.
e Key FCN: @key: (o,1) — ley.
O Q, Is HXWx3. sty Dense Festres

o @ 1 0 *Qk . where  is the correlation operation Architecture of each FCN (more on this later)
place query ey

o Do this for a number of rotations.

= Qplace 1s HxWx1. Tplace=argmaxlocationQplace'



CLIP + Transporter = CLIPort

CLIP: Transporter:

® Vision-language pre-training  Also for object manipulation
matching images to descriptions. imitation learning.

® Jointly learns a vision encoder o SEmE GHTCN S ECTIrE.
and a language encoder. e No language conditioning.

® Match the direction of the visual

and language embeddings. 3 = Hﬁnn""

Transpoeter ResNet (Untralsed)

Dense Features
Architecture of each Transporter FCN R




Architecture of CLIPort - Details

+FC Dawnsampiing & Ting  (8) Muigly @ 107 Corw Fudion @ Add for Pick | 11 Comw for Place = Softmas Sor Piek | Cross-Commetation & Softmans for Place

CLIP ResNet50 (Frozen)

Semantic

CLIP Sentence Encoder (Frozen) Affordance!
“pack all the biue and yellow = HxWx1
boxes in the brown box” Q
1024 {pick,query.key}
Train loss: cross
entropy

su perV|sed

Transporter ResNet (Untrained)
Dense Features
HxWod

! RGB-D
HxWid

Despite its name, CLIPort's training isn't CLIP-like. It uses CLIP-pretrained modules.



Experiment Results

Baselines:

Transporter-only: no language grounding.
CLIP-only: only the CLIP branch of CLIPort.

&
S
o
a
o
o
e
S
<

@)

No depth information.

Tansporter-only 1 1ansporter and CLIP saturate

. CuP.onty
. ANSO-8ERT
. CUPort (single)
m CUPort (muiti)

10 100
# of Train Demos

Task examples:

Separating piles (seen colors yeliow, brown, gray, cyan).
Separating piles (unseen colors orange, purple, pink, white).
Packing seen Google objects.

Packing unseen Google objects,

Etc... 10 tasks in total, 8 has seen and unseen.

unseen

Transporter-only  n\yiti: trained on “seen” splits of all tasks.
- CLP-only Multi-attr: “seen” splits of all tasks and

W RNS50-BERT “unseen” splits of all other tasks.
= CUiPort (single)

m CUIPort (muiti)
mm CuPort (multi-attr)

10 100
# of Train Demos



Task # Train (Samples) # Test Succ. %

I Stack Blocks 5(13) 10 700
More Experiment Results e o Dy b
- Pack Objects 10 (31) 10 60.0
Main claim: Move Rook 4(29) 10 700
e The spatial and semantic streams enable accurate :‘;Okzj(;}mh ggg :g gg
. . . ead lext .

language-grounded object manipulation. Y g Rops 4(12) 10 600
Question: Sweep Beans 5(23) 5 60.6
e CLIP-only does reasonably well. Pick Cherries 4(26) 5 130

e Is CLIPort's improvement due to the spatial Real-world tasks

stream or simply the depth map?
ATTOraa e pred O
Xy A : O &

Thank you.
Questions?




Inner Monologue: Embodied
Reasoning through Planning
with Language Models

6th Annual Conference on Robot Learning

Authors: Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor
Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas
Jackson, Linda Luu, Sergey Levine, Karol Hausman, Brian Ichter

Robot Planning § Interaction Grounded Closed-Loop Feedback Robot Environments

® Can pou bring e the arink froem the tabse? & ‘ A :
@
*

~ - Q | gow colos, water. Chocokate Ber
YOU W miter O SOk

% —
=
il

& Acton was not succesta

A Actionwes
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Human: Bring me a drink from the table

) . s #
RODOL GO 10 1he tabie

Robot: Pick up coke What happens in the

Robot: Bring it to you robot planner

Robot: Put down the coke
Robot: Done

I

I have to unlock the door.

Let me try to pick up the key and
put it in the lock...

What happens in the

No, wait, it doesn't fit, I'l try | human planner
another one.

That one worked, now |
can tumn the key.




Inner Monolog

Human: Bring me a drink from the table

Scene: | see a coke and lime soda

Robot: What kind of drink would you like?
Human: Something with caffeine
Success Detector: False

Robot: Bring ! to you

Robot: Put down the coke

Robot: Done






https://docs.google.com/file/d/1HLPB7F-B-B0NlQ1VfKHWR2I4Md5x-5sR/preview

Problem statement

e Alibrary of short horizon skills from a library of
previously trained policies i and their language
descriptions

e Planner which is LLM - attempts to find the sequence
of of skill to accomplish a task

e Environment - success detection, object detection,

scene description, visual-question answering, and even
human feedback.



recent machine learning research is that
large language models (LLMs) can not

One of the remarkable observations in
only generate fluent textual

rich internalized knowledge about the

descriptions, but also appear to have
world.

Planner -LLM

"o hloch is o0 Uhe Sop left corver.*)
“Cpin block 1s o0 the bp left cormer. “)
“Orarge Block Is on the botiom side.”).
“Orarge block (3 on the Bottom side.*)
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"Gray block ix on the bottom side.”]
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“Gray tlock is oo the bottom side *,
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Em E af 5t 61 & ~ & E & ~
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Sources of feedback

Success Datection in context Passive Scene Description in context: Active Scene Description in context:

Robot Action: Pick up coke Robot Action: Go to table Robot Action: Go to drawers

Success: True Scene: lime soda, coke, energy bar Robot Ask: Is the drawer open?

Robot Action: Bring it to user Robot Action: pick up energy bar Human: The drawer is closed.
Robot Action: Open the drawer

Figure 2: Various types of textual feedback. Success Detection gives task-specific task completion information, Passive
Scene Description gives structured semantic scene information at every planning step, and Active Scene Description
gives unstructured semantic information only when queried by the LLLM planner.




Simulated Table top Rearrangement

Human: move all the blocks into mismatching bowls.

. There is a yellow biock, yellow bowl, blue

block,
Robot: My goal ks ['yefliow block in blue bowt’, ‘red
block in yellow bowl’, ‘blue biock in red bowt’].

]
il
i
g

You achioved ["yellow block in blue bowd']
ot | need red block in yeliow bowl, blue block in
bowl

Ot: Pick up red DIOCK and place It in yeliow DOW Object Recognition Task-Progress Success Detection
Scene Description

=

5854

e We use InstructGPT [91], a 1.3B parameter language model fine-tuned from GPT-3 [9] with human feedback,
accessed through OpenAl API.

e Scripted modules to provide language feedback in the form of object recognition (Object), success detection
(Success), and task-orogress scene description (Scene), and (iii) a pre-trained language-conditioned
pick-and-place primitive

e For Object + Success method, we provide textual feedback of low-level policy success detection results
after each policy execution.

e For Object + Scene method, we provide task-progress scene description as a list of achieved sub-goals
after each pick-and-place execution



+LLM +Inner Monologue
Tasks CLIPort +orucle Object Object + Success Object + Scene

“Pick and place” 240%  740%  80.0% 90.0% 94.0%
“Stack all the blocks™ 20% 320% 4.0% 10.0% 26.0%
“Put all the blocks on the [x] corner/side™ 20%  320% 30.0% 28.0% 30.0%
“Put all the blocks in the [x] bowl™ 320% 94.0% 52.0% 46.0% 56.0%

“Put all the blocks in different comers™ 0.0% 00% 20.0% 20.0% 26.0%
“Put the blocks in their matching bowls™ 0.0% 00% 56.0% 70.0% 82.0%
Unseen Tasks “Put the blocks on mismatched bowls™ 0.0% 00% 62.0% 76.0% 86.0%
“Stack all the blocks on the [x] comer/side”™  0.0% 00% 00% 4.0% 6.0%

Table 1: Success rates for various methods, averaged across 50 episodes in Ravens-based environment with test-time
disturbances. CLIPort + oracle indicates that CLIPort was provided a “termination” oracle. Although CLIPort can
receive visual feedback from the environment, we show that LLM-informed feedback can effectively enable the planner
to retry/replan in the presence of failures, while enjoying the generalization benefits of LLLMs to unseen tasks.
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https://docs.google.com/file/d/1GNJWDAydNdIWuGnwQmN2l2fXKC_hKqWe/preview

Real World Table top Rearrangement

Human: Sort fruits and condiments in different plates
Sceno: oblects = [appie, 09g, plum, pizza, coolde, salt,
mustard, ketchup, lemon)

Scene: occluded objects =[]

—~
:
@
S
.y
g
g HKODOL 1
(-4 obot

Object Recognition
(w/ Potential Occlusion) Success Detection

e We use InstructGPT [91], a 1.3B parameter language model fine-tuned from GPT-3 [9] with human feedback,
accessed through OpenAl API.

e Two tasks: (i) a simple 3-block stacking task where 2 blocks are already pre-stacked, and (ii) a more complex
long-horizon sorting task to place food in one plate and condiments in another (where categorizing food
versus condiments is autonomously done by the LLM planner).

e For the block stacking task, the scene description contains a list of currently visible objects and a list of
previously visible objects that are no longer visible.

e For the object sorting task, the scene description contains a list of currently visible objects and a list of objects
that the robot has successfully moved into a plate.



LLM +Inner Monologue
Task Family Object Object Success Object + Success

Finish 3-block stacking  20%  40% 40% 100%
Sort fruits from bottles  20%  50% 40% 80%
Total 20%  45% 40% 2%

Table 2: Inner Monologue (with object recognition and success detection feedback) on a real pick and place robot
exceeds the performance of baseline alternatives, as measured by average task success rates over 10 runs. For both
tasks, we observe significant improvement in Inner Monologue compared to the baseline, with the two embodied feedback
being complementary to each other.




Parts of the
prompt

Task: Move all blocks to the top left corner

Scene: Visible objects are [“cyan block®, “yellow block™, "brown block™)
Scene: Occluded objects are []

Robot action: robot.pick place("cyan block™, "top left cormer™)
Successful action: True

Scene: Visible cbjects are [“cyan block™, “yellow block™, “brown block™)
Scene: Occluded objects are []

Robot action: robot.pick place("yellow block®, "top left corner”)
Successful action: False

Scene: Visible objects are [“cyan block™, "yellow block®™, "brown block®]
Scane: Occluded objects are (]

Robot action: robot.pick_place(yellow block®, "top left cormer”™)
Successful action: True

Scene; Visible objects are [“yellow block™, “brown block™)
Scone: Occluded cbjects are [“cyan block™)

Robot action: robot.pick_place("brown block™, “top left cormer™)
Successful action: True

Task: Stack all the blocks.

Sceme: Visible objects are ["brosn block®, "purple block™)
Scere: Occluded cbjects are []

Robot action: robot.pick place("brown block™, “purple block®)
Soccessful action: False

Sceme: Visible cbjects are ["brown block™, "purple block™)
Sceew: Occluded cbjects are [)

Rebot action: robot,pick place("brown block™, “purple bleck™)
Successful action: True

Scome: Visible cbjects are ["brown block™, “orange block™)
Sceme: Occluded cbjects are [“purple block™)

Robot action: robot,pick_place("orange block™, “brown block”®)
Successful action: True

Sceme: Visible cbjects are [“orange block™)

Scene: Occluded cbjects are ["purple block™, “brown block™)
Robot action: robot.stop()

s1oe

Task: Stack all the blocks.

Sceme: Visible cbjects are ["brown block™, "purple block™)
Sceme: Occluded cbjects are [)

Robot action: robot.pick place(*brown block™, “purple block®)
Successful action: True

Sceme: Visible objects are ["brown block™)
Scemwe: Occluded cbjects are ["purple block™)
Robot action: robot, stop()

SToP






https://docs.google.com/file/d/1-nRQbzmJGXYecaVD92rZ7tc15F-CFrsX/preview

Real World Mobile Manipulation

Humarn: Bring me a drink from the table Action:
Ro g0 to the IR . pick up

e | see a coke and lime soda R
ot What kind of drink would you like?
umarn: Something with caffeine

~ 1
B

i

}
R

s Detoctor: Faise

g5
53
g8

E

~ X 0
8 R R

Object Recognition Success Detection

e Three task families: four manipulation tasks, two dexterous manipulation tasks utilizing drawers, and two long-horizon
combined manipulation and navigation tasks.

e We use PALM, a 540B parameter language model trained on a large datasets that include high-quality web documents,
books, Wikipedia, conversations, and GitHub code.

e We use human-provided object recognition to provide feedback about the presence of objects visible to the robot
camera. For example, if there were only a coke can and an apple on top of the kitchen counter, then the
human-provided object recognition feedback would appear as “[scene: coke can, apple]”



+Inner Monologue
Task Family SayCan  Success  Object + Success
No Disturbances
Manipulation 500%  62.5% 75.0%
Mobile Manipulation ~ 50.0%  50.0% 75.0%
Drawers 833%  83.3% 100.0%
With Disturbances
Manipulation 125%  25.0% 33.3%

Mobile Manipulation ~ 0.0%  25.0% 75.0%
Drawers 00%  44.4% 44.4%

Total 30.8% 48.7% 60.4% The baseline, SayCan [21], is a method that
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Table 3: Averaged success rate across 120 evaluations on several ?Ce”t?rios '?)’ C‘(’jmtl)if‘ing antLL|M ":’_ith Va{/ﬁfl
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;Ve cons:ger ' I aﬁand ad LLMal Etllll | ith e;gn;] by the affordances of value functions, the
fuman kis sl o begffectivelnimpmv-il:go mbusm‘:sns of:he LLM predictions in isolation are never
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system, especially when low-level policies are prone to failures. - .
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