Movie Gen

A cast of media foundation models

First, let’s watch some clips!

https://ai.meta.com/research/movie-gen/



https://ai.meta.com/research/movie-gen/

Quick Overview

Generate HD videos with variable aspect ratios and synchronized audio
Largest: 30B, 73K tokens, 16 seconds at 16fps.

Two benchmarks, one for video gen and one for audio gen.

Key innovations: Training objectives / recipes, Data curation,

Architecture, Latent spaces, Eval protocols, Parallelization techniques,

Inference optimizations



Quick Overview

Movie Gen Video
- Joint text to image and video. Pretrained on O(1B) images, O(100M) videos, SFT on small
set of curated videos.
- Post training procedures:
- Personalization: condition on text as well as image of a person (maintains identity of
person while following text prompt).
- Precise editing: Precise and imaginative edits on real or generated videos via text
instruction.

Movie Gen Audio
- 13B, video and text to audio. Generate 48kHz sound effects. Can produce several minutes
via audio extension techniques. Pretrained O(1)M hrs of audio, then SFT on curated set.



Architecture Snapshot
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Temporal AutoEncoder

Rombach et al “latent diffusion models”:

Modelling in latent space is more efficient (rather than pixel space)
Variational autoencoder to compress images into latent representations

How to add time?

Inflate by adding temporal parameters: 1D temporal convolution after each 2D spatial convolution.
Compresses the input video from (time, 3, H, W) to (time/8, C, H/8, W/8).
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Spot Artifacts in standard VAE
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Figure 5 Spot artifact and corresponding latent dot. (a) Frame from a generated video displaying a spot artifact in the
top left corner, (b) Visualization of a TAE feature channel, where the corresponding latent dot is visible.
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model produced latent codes with high norms (‘latent dots’) in certain spatial locations,
which when decoded led to ‘spots’ in the pixel space

A form of shortcut learning where crucial global information in these high-norm latent

dots =
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Temporal AutoEncoder

Figure 16 Real (left) and TAE reconstructed (right) videos. The TAE compresses the video by a factor of 8 x across each of
the three spatiotemporal dimensions. We observe that the reconstructions from the TAE maintain visual detail present
in the original videos.



Training objective: Flow Matching vs Ditfusion

Instead of predicting next-step denoised image, predict the velocity

Noise Image
X() P N (O, 1) > X1
Xi=tX;4+ (1= (1—0min)t) Xo,
Ground Truth Velocity
Trained to predict velocity
vV, — dX conditioned on intermediate noise
= —
dt image, T value, and prompt

= X1 — (1 — Umin)XO-



Inference Time:

Start with the noise, and using a ODE solver, arrive at X_ 1 with N steps

Noise

XA = Xp + Vg(Xg, 8) A

Image

Xo ~ N(0,1)

Most video gen are trained with diffusion
formulation, where noise schedules and zero
terminal SNR are important. Empirically
found flow matching to be more robust and
outperformed diffusion.
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Let’s Discuss...

Ren Wang: The linear-quadratic scheduler is very interesting. What are the
dominant paradigms through which people view diffusion sampling schedules
in very recent literature?

Sanjeev Raja: I'd like to understand more about the flow matching approach,
especially as it relates to diffusion. Does flow matching establish a deterministic
map between the data and latent spaces? And if so, is this what yields
improvements over the diffusion setting for video generation?

Other question: Why is zero terminal SNR necessary for video generation?



Architecture:

LLaMa3 with some modifications:

1) add cross attention layers for text conditioning between
self attn and FFN

2) adaptive layer norm blocks to incorporate the time-step t
to the Transformer (similar to DiT)

3) Full bi-directional attention instead of causal mask

- Patchify the latent code with a 3D convolution and then flatten to
a 1D sequence. 2 X 2 spatial patches, projected to Transformer input
dimension

- Factorized learnable positional embedding (break up into H,W,T
and sum at the end). Add to the input at every transformer layer
(helps with warping)
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Text Embeddings for Prompt Conditioning

- Nx Transformer Blocks

Cross-attention

Long-prompt
MetaCLIP

T } J

An emu holding a sign says
“No, Movie Gen is the best”

uL2 ByT5

Use 3 different text encoders:
UL2 (prompt level embedding, text only)

Long-prompt MetaCLIP (prompt level
embedding, cross modal)

ByT5 (character-level, used to encode
visual text)

project each into 6144 and layer norm and
then concatenate. Controlling FPS by
pre-appending to the text prompt
“FPS-16"



Discussion...

Giscard Biamby: How much do we think the three different text encoders
contribute to the overall model performance? Presumably they did this

because it helps but I didn’t see an ablation.



Pre-training
Very intense data curation:

- Visual filtering, 6 filters: not too much text, better aesthetics, etc.

- Motion filtering: use motion vectors to remove jitters or static, or slideshows.

- Content filtering: dedup by finding clusters in a semantic space and sampling.

- Captions from 70b or 8B, and 16 camera movement classes

Visual filtering Motion filtering Content filtering Captioning

O Resolution
Aspect ratio

No slow motion

No text i : Deduplication Camera motion
Large pool No scene change Pogitrary mation Resampling LLaMa3 captions
of videos Basthatics No special motion
No border

_—

clip-prompt



Pre-training

Start with text to image, then joint image and video, then progressive

resolution scaling from 256 to 768px.

Directly training on joint led to slower convergence speed than initializing form a t2i model. Joint is

much slower and memory intensive due to token context lengths
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Fine-tuning

- Manually curated set with good motion and aesthetic quality.

- Automated filters thresholding for aesthetics, motion, scene change and remove videos with small subjects.

- balancing concepts viak-Nnmethods to retrieve videos for a list of human verbs and expressions / concepts

- manual filtering for angled lighting and vivid colors, no clutter, no
VFX, and select most compelling part of video.

- Manually captionin g the videos by refining the llama generated captions



Fine-tuning

- Different sets of finetune data, hyperparameters as well as pre-train
checkpoints significantly affects key aspects of the model’s behavior,

including motion, consistency, and camera control

Solution?

JUST AVERAGE/MERGE THE WEIGHTS (Let’s stop and discuss this)



Spatial Upsampler

Input videos
(576 x1008)

Image AE

Image AE

encode Encoded Latent Latent decode
Bilinear-upsampled videos feature noise z; noise z,4 HD videos

(1080 x 1920) (1080 x 1920)

Figure 7 Overview of the Spatial Upsampler. Our upsampler is a conditional video-to-video model that upsamples the 768
px video to full HD 1080p. First, the input 768 px video is bilinearly upsampled to HD and then encoded to the latent
space of an image encoder. The video latents are concatenated with noise, and denoised using a trained transfomer.
Finally, the denoised latents are passed to the image decoder to produce the upsampled video.

Discussion Question: why not use cross attention instead of

concatenating and doing self-attention?



Inference Prompt re-writing

Efficient Inference prompt rewrite via teacher-student distillation with
70B model with ICL examples, then distill high quality examples to 8B

and human-in-the-loop re-writes too.

Pesoarth

DALLE 3

DALLE 3 understands signficantly more nuance and
detail than cur previous systems, allowing you to easily
transiate your ideas IMo excepticnally accurate
images

Peas raaarch paper » |




Evaluation

Existing automated metrics struggle to provide reliable results. Limited
by the underlying model.

- Human based, 3 axis: text-alignment, visual quality, realness and

aesthetics. Further fine grained sub axis. A/B testing with humans to
pick winner

Text-alignment Visual quality

Subject & Motion alignment

Realness & Aesthetics

’ Overall Frame consistency Motion Completeness Motion Naturalness | Realness Aesthetics

Table 4 Evaluation axes for text-to-video generation. We evaluate video generations across 3 axes, each of which is
composed of multiple fine-grained sub-axes. Text-alignment evaluates the ‘alignment’ between the input text prompt

and the video. Visual quality, Realness & Aesthetics evaluate the quality of the generated video independent of the
input text prompt.



Results: SOTA across the board except for motion

MovIiE GEN VIDEO net win rate vs. prior work
Runway Gen3d Lumalabs OpenAl Sora Klingl.5 o

Overall Quality 35.02 60.58 8.23 3.87 +5.07
Consistency 33.1 42.14 8.22 13.5 +4.08
Motion Naturalness 19.27 29.33 4.43 0.52 +3.98
Motion Completeness -1.72 23.59 8.86 -10.04  +1.68
Text-alignment 10.45 12.23 17.72 -1.99 +3.74
Realness 48.49 61.83 11.62 37.09 +2.52
Aesthetics 38.55 48.19 6.45 26.88 +4.84

Table 6 Movie Gen Video vs. prior work. The comparison uses either generated videos from the Movie Gen Video Bench
prompt set (Runway Gen3, LumaLabs, Klingl.5) or prompts from publicly released videos on their website (OpenAl
Sora). A detailed summary of information from prior work is shown in Table 41. We measure the net win rate (win% -
loss% of our model) which has a range of [—~100%, 100%]. To assess statistical significance, we perform an annotation
variance analysis (Appendix C.1), with the net win standard deviation, o, indicated in the table above. A significant
win/loss is identified when the net win rate is beyond 20 (95% CI), a moderate win/loss within 1-2 o (68% CI), and
performance is considered on par within 1o.



Discussion:

- Mihran Miroyan: The paper introduces human evaluation as a
primary method for assessing video quality, alignment, and
aesthetics due to the limitations of automated metrics. What are the
potential biases in human evaluation for generative models, and how

can we develop more objective evaluation frameworks

Text-alignment Visual quality Realness & Aesthetics

Subject & Motion alignment ’ Overall Frame consistency Motion Completeness Motion Naturalness | Realness Aesthetics

Table 4 Evaluation axes for text-to-video generation. We evaluate video generations across 3 axes, each of which is
composed of multiple fine-grained sub-axes. Text-alignment evaluates the ‘alignment’ between the input text prompt

and the video. Visual quality, Realness & Aesthetics evaluate the quality of the generated video independent of the
input text prompt.



Video Personalization:

Reference lImage Prompt: A person dressed in elegant attire is seen checking the table settings
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Video Personalization:

Data: paired (reference image is taken from same video clip) and cross
paired (reference image originates from different video but same subject,

taken from real and synthetic via personalized image generation model)
Training recipe
1) image gen: condition on a reference image and preserve identity
2) generate long personalized videos

3) improve generated human expressions and motion naturalness



Results:

Method Identity,.,, (1) Identity,,,.s; (1) Face Consistency (1)
ID-Animator 3.69% 3.08% 79.69%
PT2V Pre-train 71.91% 66.36% 97.53%
PT2V Finetune 65.52% 60.19% 95.61%

Table 14 Personalized Movie Gen Video (PT2V) evaluation. We compare our model after the pre-training and supervised
high-quality finetuning stages against ID-Animator (He et al., 2024a) on Identity score on the best similar frame, the
worst similar frame, and face consistency across frames.

PT2V-Finetune net win rate PT2V-Pretrain net win rate
vs. ID-Animator vs. T2V-Pretrain
Overall Quality 64.74 3.95
Consistency 22.18 10.33
Motion Naturalness 37.38 -1.82
Motion Completeness 5.17 -5.16
Text Alignment 53.20 -11.25
(a) (b)

Table 16 Personalized Movie Gen Video (PT2V) evaluation on video quality and text alignment. (a) Net win rate (win% - loss%)
of our PT2V after supervised finetuning vs. SOTA (ID-Animator (He et al., 2024a)). PT2V significantly outperforms
ID-Animator in all metrics. (b) PT2V vs. MovIE GEN VIDEO (T2V) without the visual conditioning. We observed
that PT2V wins consistency and performs on par in overal quality accounting for statistical significance, but loses in
motion completeness and prompt alignment due to the narrow concept distribution (activities, objects, etc.) of PT2V.



Instruction Video Editing:

state-of-the-art results in video editing, trained without any supervised

video editing data

Stage |: Single-frame editing Stage II: Multi-frame editing Stage llI: Video editing
Joint training of image editing and text-to-video Joint training of animated editing and object segmentation Training video editing via backtranslation
Image Editing Animated Frame Editing Backtranslation

“Replace the man with a cat” “Replace the man with a cat” “Replace the cat with a man”
— _ Predicting a clean video from a generated video

Text-to-Video Object Segmentation

“A man cycling in the street” “Mark the shirt in blue”



Results:

Daitasit Method Human Evaluation Automated
Text Struct. Quality Overall ViCLIPg4i 1t VIiCLIP gyt
TAV (Wu et al., 2023b) 85.00 81.94 91.57 89.70 0.131 0.242
STDF (Yatim et al., 2023) 84.43 61.60 73.21 74.43 0.093 0.227
TGVE+ Fairy (Wu et al., 2023a) 84.15 77.52 84.20 84.91 0.140 0.197
InsV2V (Cheng et al., 2024) 73.75  66.60 70.73 70.85 0.174 0.236
SDEdit (Meng et al., 2022) 85.51 90.07 76.19 80.59 0.131 0.241
EVE (Singer et al., 2024) 69.48  70.05 75.18 74.38 0.198 0.251
MovIE GEN EDIT (Ours) - - - - 0.225 0.248
Runway Gen3 V2V (RunwayML, 2024) 88.14  98.33 83.14 93.33 0.068 0.188
: : Runway Gen3 V2V Style (RunwayML, 2024) 55.55  73.61 58.33 59.72 0.124 0.214
Movie; Gen.Edit Bench  onypaiy (Meng otal., 2022) 94.37 86.34  85.14  91.96 0.124 0.239
MoviE GEN EDIT (Ours) - - - - 0.209 0.224

Table 18 Comparison with video editing baselines on the TGVE+ and Movie Gen Edit Bench benchmarks. We report ViCLIP
metrics and human ratings. Human evaluation shows the win rate of MoviE GEN EDIT (Ours) against the baselines.
Runway Gen3 videos were collected on September 24th, 2024. For the human evaluations we report ‘win rates’, which
can lie in the range [0, 100], where 50 indicates a tie between two models.



Text/Video to Audio Generation
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Figure 28 Movie Gen Audio model diagram. Yellow blocks denote input, blue blocks denote pre-trained and frozen
modules, gray blocks denote operations without learnable parameters, green blocks denote learnable modules, and the
pink block shows the output velocity u(X¢,c,t;6). Conditioning input ¢ includes masked audio context, video, and
text. X; is a sample from p:, and t is the flow time step. For audio context, we replace the masked frames with zeros

for DAC-VAE output.
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Text/Video to Audio Generation
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Figure 27 Movie Gen Audio extension diagram. A user provides a video (e.g., 58s), and audio caption for each video chunk
(e.g., 20s). Starting from the second chunk, the model takes not only the video chunk and the caption, but also a
segment from the previously generated audio (e.g., the last 5s) in order to generate a new chunk that is coherent with

the previous one.



Text/Video to Audio Generation

MovVIE GEN AUDIO net win rate vs. baseline

Dataset Baseline Type Quality Video-SFX Alignment
Ovr. Nat. Pro. Corr. Sync.

Diff-Foley (Luo et al., 2024) V2A 76.6112‘6 48.1:{:15‘6 79-5ﬂ:11.1 61.6i13,0 46.1:{:14‘3
FoleyCraft (Zhang et al., 2024) V2A  69.21141 5721163 69.24141 50.41134  49.7+170
VTA-LDM (Xu et al., 202421) V2A 32-9:i:1845 31-5:{:1845 38.2:&13'9 47-4i1647 50-4:&1643

SReal SFX Seeing&Hearing (Xlng et al., 2024) V2A 85.8:&9.3 83.6i11_1 85.8i9'3 63.6114_8 63.7i14_1
Seeing&Hearing (Xing et al., 2024) TV2A 76.81:11‘1 67.9:{:15‘2 76.8:{:11_1 56.1117,4 51-3:&1847
PikaLabs (Pika Labs) V2A 58.6+152 49.7+163 60.04141 5694141  48.8+181
PikaLabs (Pika Labs) TV2A 41.91:20‘4 31.9:{:23‘0 41.9:&20'4 35.8*18_5 34-2:!:1844
ElevenLabs (ElOVCHLabS) T2A 13.2;{;21(5 8.75:21‘5 13.2:{:21_5 27~5i1&9 35.0:{:19‘3
Diff-Foley (Luo et al., 2024) V2A 78.7+68 762466 78.5+66 82.2454 704487
FoleyCraft (Zhang et al., 2024) V2A 65.05:8,7 59-5:1:&5 65.05:3‘5 57.2:{:7‘7 49.6:{:10‘0
VTA-LDM (Xu et al., 2024a) V2A 7717470 638477 76.8+71 61.7452 58.249.0

SGen SFX Seeing&Hearing (Xing et al., 2024) V2A 82.1:{:7.4 76.9:{:8_0 82‘6:&7‘3 63.6:{:3‘6 33.8:{:10‘1
Seeing&Hearing (Xing et al., 2024) TV2A 762471 754471 761173 641479 33.8410.1
PikaLabs (Plka. Labs) V2A 61-2:i:1046 55.5:{:10‘7 62.6:{:9_6 56-211245 52.1:{:12‘7
PikaLabs (Pika Labs) TV2A  53.6.116 4601116 5454114 44641109 3944117
ElevenLabs (ElevenLabs) T2A 49.7198 453499 473498 31.84g1 35.5495
Diﬁ'—Foley (LUO et al., 2024) V2A 91'0i243 78.1:{:3'0 90'7ﬂ:2-3 81-8i3_0 70.9i4'3
FoleyCraft (Zhang et al., 2024) V2A Tl4440 60.7440 719140 574143 53.345.1
VTA-LDM (Xu et al., 2024a) V2A T1.7440 6534142 720440 76.5436 72.844.4

Movie Gen.Audio.Beneh SEX Seeing&Hearing (Xing et al., 2024) V2A 83.9430 723136 83.9+30 66.6139 56.7+4.9

Seeing&Hearing (Xing et al., 2024) TV2A 715440 70.0439 714139 594144 514453
ElevenLabs (ElevenLabs) T2A 313456 274454 3lliss 383451 36.0+6.0

Table 30 Sound effect generation pairwise subject evaluation. This table compares MoviE GEN AuDIo with prior work on
audio quality and video alignment. We report net win rate, which has a range [-100%, 100%)], and its 95% confidence
intervals. Positive values indicate MoOvIE GEN AUDIO outperforms the baseline on the metric.



Model Scaling

6k H100’s, didn’t use GQA

3D parallelism: parameters, input tokens, and dataset size

- Tensor Parallelism: shards linear layers along columns or rows (introduces all-reduce
communication overhead)

- Sequence Parallelism: sharding over the sequence dimension in specific layers (layers
which are replicated and in which each sequence element can be treated independently)

- Context-parallelism: partial sharding over the sequence for sequence-dependent
softmax-attention operation.

- Fully Sharded Data Parallel: shards the model, optimizer and gradients across all
data-parallel GPUs, synchronously gathering and scattering parameters and gradients
throughout each training step



