loongLLaVA Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture

Kumar Krishna Agrawal , 09/23/2024

Toward multi-image MLMs

Challenges

An Example from SEED-Bench

Multi-image Examples from MileBench

Challenges

Excessive Input Length

- number of tokens grows linearly with number of images
- computational/memory complexity, particularly for attn computation grows quadratically

Challenges

Computational cost for inference increases (e.g. storing KV-Cache) grows

Architecture

Transformer layer

Attention MoE layer

Mamba MoE layer

Architecture

Architecture	Compute Complexity	ICL	Rep
Transformer	Quadratic	✓	Gen
Mamba	Linear	×	Man
Hybrid	Quasi-Linear	✓	Jam

resentative models

nma (<u>Team et al., 2024a</u>), LLaMA (<u>Touvron et al., 2023a</u>) nba (<u>Gu & Dao, 2024</u>), Mamba-2 (<u>Dao & Gu, 2024</u>) ba (<u>Lieber et al., 2024</u>), Zamba (<u>Glorioso et al., 2024</u>)

Architecture

Figure 2: Architecture of LongLLaVA

Data Protocols

Data Processing Protocol

In the Following Statement: <Image>=<img_token>... *For Single-image*: "<Image>\n What is this?" *For Multi-image*: "<Image>\n This is a cat. <Image>\nThis is a:" *For Video*: "<vid><Image><t>...<Image></vid>\n What are they?" For Patched-image: "<Image>\n<Image>...\n..<Image>\n What are they?"

Regular Single and Multiple Images: use tokens **Video:** use <vid> </vid> to enclose image tokens, <t> to separate tokens **High Resolution Image:** for multiple patches, use <\n> to indicate same image patching

Figure 3: Data Processing Protocol for LongLLaVA.

Data Protocols

Benchmarks

Madal			MileBench	1		Vi	ideoMME	w/o suł	DS	MUDanah
Widdei	PFLOPS	Temporal	Semantic	IR	Avg.	Short	Medium	Long	Avg.	
			Proprie	etary I	Models	5				
GPT-4V	-	45.6	58.9	86.7	63.7	70.5	55.8	53.5	59.9	43.5
GPT-40	-	56.2	63.5	88.8	69.5	72.5	63.1	58.6	64.7	-
Gemini-1.5-Pro	-	50.2	58.3	88.0	65.5	78.8	68.8	61.1	69.6	-
Claude3-Opus	-	37.4	48.1	25.0	36.8	70.5	57.4	51.2	59.7	-
			Open-so	ource I	MLLM	s				
Video-LLaMA2	3.71	-	-	-	-	55.9	45.4	42.1	47.8	34.1
VideoChat2	0.24	25.5	25.5	9.2	20.1	48.3	37.0	33.2	39.5	51.9
LongVILA	3.90	-	-	-	-	61.8	49.7	39.7	50.5	-
Phi-3-Vision	2.68	46.9	50.0	18.7	38.5	-	-	-	-	-
OmChat	3.90	51.4	52.0	34.2	45.9	-	-	-	-	50.2
LongLLaVA*	0.22	52.7	52.1	67.5	57.4	60.9	49.7	44.1	51.6	54.6

Diagnostic Evaluation

Video MLLM	PFLOPs	R E	letrieva I-1	al I-2	C E	Orderin I-1	g I-2	C E-1	Countin E-2	g I	Average
			Pr	oprieta	ry Mo	dels					
Gemini-1.5	-	100.0	96.0	76.0	90.7	95.3	32.7	60.7	7.3	42.0	66.7
GPT-40	-	100.0	98.0	87.3	88.4	86.6	45.2	36.8	0.0	36.1	64.4
GPT-4V	-	100.0	99.3	82.0	42.6	22.8	23.0	37.6	0.0	32.4	48.9
			Op	en-sour	ce ML	LMs					
Video-LLama2	0.85	1.2	26.0	6.0	0.0	0.0	0.0	2.0	4.7	0.7	4.5
VideoChat2	0.08	43.4	40.0	14.6	0.0	0.0	1.3	4.4	8.0	12.4	12.4
LongLLaVA*	0.09	100	73.3	100.0	37.5	35.3	34.8	36.0	23.7	28.0	52.1

Ablations

Method	#Token	GQA	MMMU	SQA^{I}	SEED_{img}^{v1}	$\operatorname{Mile}_{avg}^*$
LLaVA-1.5-13B	576	63.3	34.4	71.6	68.2	27.6
+Jamba	576	63.2	41.4	75.4	69.8	38.2
+1D Pooling	144	60.4	42.0	73.9	66.3	36.2
+2D Pooling	144	61.3	42.1	75.2	67.4	37.7
+Single-image Data	144	62.2	42.1	75.9	68.9	50.0
+Multi-image Data	144	59.9	39.2	73.4	65.3	57.4

In Context Learning

Madal	Anah	A ativa Danam	#Fev	v-sho	t of V	L-ICL	100	K Token (Effic	iency)
wiouei	Arcn.	Active Faram.	1	2	4	5	Prefill (s)	TP (tokens/s)	Mem.(GB)
Cobra	Mamba	3B	48.7	50.3	51.0	51.5	10.2	42.7	29.9
LLaVA-1.6*	Transformer	13 B	50.0	52.3	54.6	58.9	34.0	14.7	79.4
LongLLaVA*	Hybrid	13B	52.3	59.0	59.0	61.3	25.5	37.6	79.1

Table 5: ICL Capability and Efficiency Analysis across different Architectures. * means the Model is evaluated using Int8 precision. We select Cobra 3B since it is the largest Mamba-based LLM to date.

Scaling with more images

Figure 6: Performance of LongLLaVA with in-Figure 5: Performance of LongLLaVA with increasing frame counts on Video-MME creasing sub-image counts on V*

Needle in Haystack Evals

LongLLaVA Accuracy Heapmap

	100	200	зóо	400	500	600	700	800	900	1000
1.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.25
0.8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.25
0.6	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.25
0.4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.25
0.2	1.0 This mult	ti-stage training to increase	e context length is also se	en in LWM, though the au	uthors' reasoning for it her	e is a bit different. What is	s their justification in using	g this progressive training	g, and how does it differ f	rom the LWM reasoning

Num. Frame

Discussion

>> This multi-stage training to increase context length is also seen in LWM, though the authors' reasoning for it here is a bit different. What is their justification in using this progressive training, and how does it differ from the LWM reasoning?

>> How should one figure out which architecture to go with? We've seen Mamba and the KAN architecture as well but Im curious how people decide what to go with (is it just what everyone is talking about at the time?) Also we just saw a couple weeks ago that SigLIP is better. Why use clip for the encoder then??

Also, many of these papers show multi stage training pipelines. In the future, could one envision dumping all the data into a single folder and then having another mechanism that suggests/picks which samples to train on and when?

