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RL with Human Feedback

Start with a dataset of preferences: (x, y,,, ¥;)

Probability that y,,, is preferred over y; can be captured with a
specific function class (e.g., Bradley-Terry model):

P W = yilx) = o(r™ (2, yw) — r" (2, 41))

Train a reward model:

Lr(ry) = Eay, y~n|—1080(re (2, Yuw) = 76 (2,41))]



RL with Human Feedback

Train a reward model:

Lr(rg) = Esy,y~n[=1080 (16 (2, Yu) — 16 (2,y1))]

Train a language model through reward maximization and add a KL
divergence w.r.t. to the base model:

EmEDij‘no [ch (gf.a y)} o 6DKL(7T9 (y"j’.) Hﬂ-ref(y‘g’.))



RL with Human Feedback (DPO)

Design a closed-form loss that maximizes the margin between the
oreferred and dispreferred generations.

Direct Preference Optimization:

Lopo (o, Tret) = Eg 4y yy~D

' 7o (Y |2) mo(yilz) \
—logo (6 08 yalz) P mef@z:c))_




Prospect Theory

Prospect theory explains why, when faced with an uncertain event,
humans make decisions that do not maximize their expected value.

Gamble: $100 with 80% and $0 with 20%.

A person might prefer $60 for 100% even though the expected
return if they gambled was $80 as they might be loss-averse.



Prospect Theory (Tversky and Kahneman, 1992)

A value function maps an outcome z, relative to reference point z,,
to its perceived (subjective) value.

Tversky and Kahneman proposed the following functional form for
human value:

o(z M v, z0) = (z — 20)° if z > 2z
AR —Azp — 2)* ifz < 2z

a controls the curvature of the function (risk aversion)
A controls the steepness of the function (loss aversion)



HALOs

HALO: human-aware losses

implied reward: 76(7,y) = [(y) log[mo(y|2) /et (y|7)]
Reference point distribution: Q(Y'|x)

Human value of (x,y): v(re(x,y) — EQ[””'G (, y,)D

expected reward from
human’s perspective



HALOs

A function f isaHALO forvif 3 a,, € {—1,+1} such that:

f(ﬂ-ff)ﬂ T”TI‘e’f) —
Emijp[@m,yv(ré’ (xﬂ y) T EQ [TQ (xﬂ y’)D} + CD

where D is the feedback data and Cp € R is a data-specific
constant.



HALOs Interpretation

1 1

Bucbuen role, )] — ADK(royle) (o) —> 7 (412) = 5 aslyle) exp (57°(2.9))

f(ﬂ-t?a ﬂ-re’f) —
Eey~Deyv(re(x,y) — Eglre(z,y')])] + Cp

0le) = i) exp (%r <x,y>)

() = 6

> 7o+ (x,y) = r*(x,y) — Blog Z(x)

under 8%, the HALO-defined reward is the
optimal reward shifted by an input-specific term
=>rg+ isin the same equivalence class as r*
=>would induce optimal policy r*



HALO vs non-HALO

Conditional SFT: non-HALO

Sequence Likelihood
Calibration(SLiC): non-HALO

DPO: HALO
PPO (offline): HALO

Implied Human Value

Kahneman-Tversky f concavity
PPO-Clip v
s DPO
loss <« T’W gain
loss _, reference point

aversion

(for DPO, reward of dispreferred y)




HALO vs non-HALO

LLM-as-a-judge (GPT-4) to compare the alighed model’s response
with the SFT target (subset of y,, ).

Does the aligned model beat the SFT target?

W Pythia-{1.4B, 2.8B, 6.9B, 12.0B}
+10%{ " Llama-{7B, 13B, 30B}
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Up to a scale of 7B, alignment provides no gains over SFT alone.
Why?



HALO vs non-HALO

LLM-as-a-judge (GPT-4) to compare the alighed model’s response
with the SFT target (subset of y,, ).

Does the aligned model beat the SFT target?

W Pythia-{1.4B, 2.8B, 6.9B, 12.0B}
+10%{ " Llama-{7B, 13B, 30B}

Frrrer

unaligned SFT+CSFT SFT+SLiC SFT+DPO SFT+offline PPO

HALOs either match or outperform (13B+) non-HALOs.
Why?
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Kahneman-Tversky Optimization

. . . — « ' >
Start with the canonical Kahneman-Tversky value function:  u(z; \, o, z0) = (2 = 20) iz 2 20
—Mzo — 2)* itz < 29

* Replace exponent a with the logistic

function for stability.

Lxto(mo, Tret) = Eg yun Ay — v(2,Y)]

* Controlthe degree of risk aversion, using

hyperparameter 3 (the greater 5, the more where

quickly the value saturates) - similar to - ( ‘m)
effect as {8 in RLHF and DPO. ro(z,y) = log -2 (y =
Tref\Y|L
* Replace loss a\{ersion coefficien.tﬂwith 20 = KL(m;(y'\:U) ||7Tref(y"g;-))
{Ap, Ay} for desirable and undesirable _
outputs, respectively. oz, y) = )\DU(/@(TQ(Q% ZJ) — ZO)) ity ~ ydesirable\ill'
’ )\UU(B(ZO — T (331 y))) if Yy~ yundesirable‘x

* For the reference point zy, assume humans
judge the quality of y|x in relation to all
possible outcomes.



Kahneman-Tversky Optimization

KTO loss:

Lxto(me, Trer) = Ez yD|[ Ay — v(2,Y)]

where

ro(x,y) = log

mo(y|v)
Tret (Y] )

20 = KL(mo (y'|2) | 7rres (y'|2))

v(z,y) = {

Apo(B(re(x,y) — 20)) if Y ~ Ydesirable|T
AUC"(B(ZO — T (373 y))) if Yy~ yundesirable‘fff'

Intuition:

If the modelincreases the reward
of a desirable example in a blunt

manner, then the KL penalty also
rises, and no progress is made.

This forces the model to learn
exactly what makes an output
desirable, so that the reward can
be increased while keeping the KL
term flat.



Kahneman-Tversky Optimization

KTO loss:

Lxto(me, Tret) = Exz y~n[ Ay — v(2,9)]

where

ro(x,y) = log

mo(ylr)
Tret (Y1)

= KL(7g (y,‘x) Hﬂ'ref(y,‘x))

v(z,y) = {

Apo(B(re(x,y) — 20)) if Y ~ Ydesirable | T
AUO'(@(ZO —To (33'7 y))) ify ~ yundesirable‘x

What’s wrong with this loss?

Problem: estimating z, is impractical because
sampling from 1y is slow and humans do not perceive
the full distribution induced by g when making
judgements.

Simulate human-perceived reference point: create m
pairs (x;, yj) where y; is in the same m-sized batch of
offline data as x;.

Zo = max | 0, — Zlo ™o (Y] i)
’l#j Tlref yj|$z)



Kahneman-Tversky Optimization

Data
Convert preference data y,, > y; by assuming that y,,, is drawn from the desirable and y; from the

undesirable distribution.

What are some problems with this approach? How can we mitigate these problems?

Hyperparameters Ao D 4
Control the degree of loss aversion with Ap and 4. Ty < [1, —]

3
Tune to mitigate class imbalance.
If minimizing the downside more important (e.g., toxicity prevention), set Apnp < Ayny



Evaluation

Does the aligned model beat the SFT target?

+20% | mEE Pythia-{1.4B, 2.8B, 6.98, 12.0B}
m Llama-{7B, 13B, 30B}

Winrate above Chance
(percentage points)
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offline PPO SFT+offline PPO

SFT+DPO

Dataset (—) MMLU GSM8k HumanEval BBH
Metric (—) EM EM pass@ 1 EM
SFT 57.2 39.0 30.1 46.3
DPO 58.2 40.0 30.1 44.1
ORPO (A =0.1) 57.1 36.5 29.5 47.5
KTO (B =0.1,A\p = 1) 58.6 53.5 30.9 52.6

SFT+KTO

KTO > DPO

SFT+KTO comparable to
SFT+DPO (1B-30B).

KTO alone is better than DPO
alone for Llama-{7B, 13B, 30B}.
No significant difference for
Pythia models (why?)
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Evaluation

Does the aligned model beat the SFT target?
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KTO ~ SFT+KTO
At sufficient scale (Llama-{13B, 30B})
KTO is competitive with SFT+KTO.

This is not case for other methods (e.g.,
DPO). Why?



Evaluation

Does the aligned model beat the SFT target?
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KTO Winrate (vs. SFT Target)
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(1:1 ratio of positive:negative) é (1:1 ratio of positive:negative)
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number of positive examples
per negative

number of negative examples
per positive

Is the difference dueto 2n > n?
For Llama-7B, up to 90% of the desirable
data can be discarded while still

outperforming DPO.

(tune Ap and A, accordingly)

Method

Winrate vs. SFT Target

Mistral-7B (unaligned)
Mistral-7B + DPO

Mistral-7B + KTO (all y per x)
Mistral-7B + KTO (one y per )
Mistral-7B-Instruct

0.525 4= 0.037
0.600 == 0.037
0.652 + 0.036
0.631 £ 0.036
0.621 4= 0.031




Evaluation

Remove reference model?
Assume 1., ¢ returns a uniform distribution over outputs.
Better than DPO on GSM8k, BBH and worse on MMLU, HumanEval.

Dataset (—) MMLU GSM8k HumanEval BBH
Metric (—) EM EM pass@ | EM
SFT 57.2 39.0 30.1 46.3
DPO 58.2 40.0 30.1 44.1
ORPO (A =0.1) 57.1 36.5 29.5 47.5
KTO (8 =0.1, A\p = 1) 58.6 53.5 30.9 52.6
KTO (one-y-per-x) 58.0 50.0 30.7 49.9
KTO (no zp) 58.5 49.5 30.7 49.0
KTO (concave, v = log o) 58.3 42.5 30.6 43.2
KTO (risk-neutral, v(-) = -) | 57.3 42.0 28.8 6.1
KTO (no 7pef, Ap = 1.75) 57.5 47.5 29.5 51.6




Theoretical analysis

Proposition 4.1. As the reward implied by the current policy
tends to 0o, the KTO update of my tends to zero.

If a data point (x, y) is implied by the current policy to be too
difficult or too easy to learn from, then it is ignored.

Pros: ignore noisy data (mislabeled examples)
Cons: ignore hard-to-learn but necessary data.

tune [ (make it smaller)?

Lxto(me, Tret) = Ep yn [Ny — v(2,Y)]

where

ro(x,y) = log

To(y|z)
Tret (Y[ )

z0 = KL(mo (y/'|2) | Trer (3 |))

v(z,y) = {

Apo(B(re(x,y) — 20)) if ¥ ~ Ydesirable|T
)\UU(B(ZO —Tg (ZE‘, y))) ify ~ yundesirab]e|93



Theoretical analysis

Theorem 4.2. Assuming the value function is logistic, for a
reward function v that maximizes (2), there exists a reward
function in its equivalence class (i.e., v} (z,y) = ri(x,y) +
h(x) for some h(x)) that induces the same optimal policy
m* and the same Bradley-Terry preference distribution but
a different human value distribution.

Value distribution (human utility) is affected by input specific
changes - h(x).
Maximizing preference likelihood # maximizing human utility

Human evals: Why?
win rate of KTO: 72.9% (65.2% by GPT-4)
win rate of DPO: 62.1% (60.0% by GPT-4)

Lxto(me, Tret) = Ep yn [Ny — v(2,Y)]
where

To(y|z)
Tret (Y[ )
20 = KL(7g (y'[) || et (v 2))

U(CE, y) = {)\DU(ﬁ(TH(SC, y) - ZO)) lfy ~ ydesirab1e|53

ro(x,y) = log

)\UU(B(ZO —Tg (Q’J, y))) ify ~ yundesirab]e|37

Proof. Following the definition in Rafailov et al. (2023), we say 7 and v}, are in the same equivalence class if there exists
some function h() such that v (e, y) = rj(x,y) + h(x). From Lemma 1 in Rafailov et al. (2023), we know that two
functions in the same equivalence class induce the same optimal policy:

T (ylz) = %”rrm[y|.r] exp (lff:(! .!]))
: (ko) \p(' “( )) \p('f())
= met(yl) exp | =ri(e,y) ) exp [ =h(x
5 mwtlyle) exp (3ra(e.)) exp (3(0)) g E
1
3, mre(yl) exp (%(rz(-!'- y)+ h(‘r‘)))

=, (ylz)

1
Toet(yl) exp (;p-;(.-a v+ f:wn)

For a Bradley-Terry model of preferences, it is trivial to show that p(y,, > |x) is unaffected by h(.) since it is added to the
reward of both y,, and y. We will now show that the two reward functions do not necessarily induce the same distribution
of human values,

A Taylor series expansion of the human value of r,(r, ) would be:

"
o tfl)m

a(0) + " (0)(ri(x,y) — z0) + 5 wa,y) — z20)% + ...

A Taylor series expansion of the value of v (.r, y) + h(x) around i(.) would be:

) # RV L, o), 2
o(h(x)) + o' (h(x))(ra(e, y) — 20) + 5 (ra(e,y) = 20)" + ...

Since o is strictly monotonic, for these series to be equal, we must have /() = 0. If this is not the case, then the values of
ra(x,y) and rj (, y) will be different. Thus two arbitrary reward functions in the same equivalence class do not induce the
same distribution of human values. I



Theoretical analysis

Theorem 4.3. For input x with outputs {y..ys}, let dataset
D comprise contradictory preferences vy, > Yy, and 4, > Ya
in proportion p € (0.5,1) and (1 — p) € (0,0.5) respec-
tively. If pY/P1p(yalz) < (1 — )Y P7pf(yp|x), then the
optimal DPO policy is more likely to produce the minority-
preferred 1., the optimal KTO policy will strictly produce
the majority-preferred 1y, for a loss-neutral value function

(Ap = Av).

KTO has better worst-case outcomes when handling
feedback intransitivity.

Lxto(me, Teet) = Eu yun[ Ay — v(2,9)]
where

mo(y|z)
Trer (Y] )
20 = KL (7 (y'|2)[|mrer(y'|2))

)\DU(B(TG (33, y) — ZO)) if y ~ ydesirablelx
)\UU(B(ZO —To (33: y))) ify ~ yundesirab]elvjU

ro(z,y) = log

v(r,y) =

Proof. Where u = 3(ro(x, ya) — ro(x, ys)), we can write the total DPO loss for « as
Lovo(r) = p(=logo(u)) + (1 = p)(—loga(=u))
Taking the derivative with respect to v and setting to zero, we get

T 1 (1= T 1= o)+ (L o) = —p + ()

o(—u)
— u=olp)
57';(“’"1 ya) = ail(p) + 3’; (‘L yb)

0=—p

* . * e
Blog ToWal?) 1o P gy, Tallr)
ﬂ'ref(ya‘l") 1—p 7Tref(yb‘d")
1/8
s £
mituoke) = (725) - T il
1—p et (o))

Thus when p'/#7¢(ya|z) < (1—p)Y/Pre(yp) ), we have 75 (yq|x) < 75 (yp|x), meaning the optimal DPO policy is more
likely to produce the minority-preferred ys.
Where ug = B(rg(z,ya) — Eglre(x,y')]) and up = 3(re(z, o) — Eq[re(z,y’)]), noting that 1 — o (—u) = o(u), we can
write the total KTO loss for x as
Lxro(2) = pAp(l — o (ua)) + (1 = p)Avo(ua) + pAve(us) + (1 —p)Ap(1l — o(up))

=pAp + (1 —p)Av — pAp)o(ua) + (1 = p)Ap + (pAv — (L —p)Ap)o(w)

=Ap + ((1=p)Av —pAp)o(ua) + (PAv — (1 = p)Ap)o(us)

=Ap + Ap((1 —2p)o(ug) + (2p — 1)o(up))  (under loss neutrality)

Given that p > 0.5 by assumption and Ap > 0 by definition, the KTO loss is decreasing in u, and increasing in up—and thus
decreasing in (i, 3, ) and increasing in 19 (:z, s ) respectively. The optimal KTO policy is thus 7 (y|@) = 1[y = ya]. O



Which one?

KTO
* Binary-formatted imbalanced human feedback.
* Preference data: noisy feedback with intransitivity (theorem 4.3).

DPO

* Little noise and little intransitivity (KTO might underfit -
proposition 4.1).



Discussion

KTO has a default loss. The parameters (e.g., loss aversion) differ across
individuals in behavioral studies.

How can we efficiently adapt the current KTO formulation to account for this?
Would this make a big difference?

KTO (value function) was inspired from behavioral studies on monetary
gambles, which differ from how humans perceive and interpret text.

What analogous settings in human behavior could provide closer inspiration for
Al alignment? And how can we refine the KTO formulation accordingly?
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