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How can we enable this?



Language Models are (excellent) Next-Token 
Predictors
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One key emergent ability in GPT family is zero-shot learning: the ability to do many tasks with no 
examples, and no gradient updates, by simply:

● Specifying the right sequence prediction problem

Passage: (information) Q: The capital of France is A: [...]

● Comparing the probability of sequences

The cat couldn’t fit into the hat because [the cat] was too big
The cat couldn’t fit into the hat because [the hat] was too big 

https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture10-prompting-rlhf.pdf



We can even hack them by 
example:
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Brown, Tom B. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020).
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https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture10-prompting-rlhf.pdf
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So what can we do?
We fine-tune!
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From SFT to IRL to RLHF to DPO
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Chung, Hyung Won, et al. "Scaling instruction-finetuned language models." Journal of Machine Learning Research 25.70 (2024): 1-53.
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Limitations of instruction fine-tuning:

● It’s expensive to collect ground truth
● Tasks such as open-ended creative generation have no correct answer
● Language modeling penalizes all token-level mistakes equally (but some are worse than 

others)
● Humans often generate sub-optimal answers

Can we explicitly model human preferences?
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What’s wrong with learning human policies directly?
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What’s wrong with learning human policies directly?

● Expensive to collect expert demonstrations
● Experts are assumed to be optimal (They’re still usually not)
● Experts must EXIST (and it’s hard to transfer to new tasks where they don’t)
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Limitations of RLHF:



From SFT to IRL to RLHF to DPO

25

Limitations of RLHF:

● Complexity: Designing and training reward models can be challenging
● Computational Overhead: It’s expensive
● Control: Users don’t have direct control over the LLM’s behavior
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https://web.stanford.edu/class/cs234/slides/dpo_slides.pdf
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Paper 1: From DPO to KTO
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Paper 2: RLHF-V
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Paper 3: Self-Supervised Visual Preference Alignment 
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Conclusion / Discussion (Time permitting)
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Overall:

● When should we use alignment-tuning processes (such as KTO, DPO, etc.) vs raw base models? Are there 
advantages to using non-aligned models?

● Are there any differences between preference optimization with multimodal models, and preference 
optimization with unimodal models? Should we consider modality-specific paradigms for vision-language 
learning?
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Human Preferences and Instruction Design:

● What challenges arise in modeling human preferences for vision-related tasks? How do these compare to 
challenges in language instruction tuning?

● How can vision instruction tuning incorporate subjective preferences, such as aesthetic judgments or 
creative interpretations?
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Limitations and Challenges:

● Are there any specific bottlenecks in instruction-tuning for vision tasks, especially compared to language?
● Do biases in training datasets manifest differently in vision tasks, do we need to take different approaches to 

vision instruction tuning?
● What role do statistical priors play in enabling zero-shot or few-shot learning in vision tasks? How can these 

priors be mathematically represented and optimized during tuning?
● Does alignment tuning (such as in LLaVA) impact human preference tuning?
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Evaluation and Metrics:

● How should success in vision instruction tuning be measured? What metrics can effectively capture 
performance beyond accuracy?


