#### Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding

Chitwan Saharia<sup>\*</sup>, William Chan<sup>\*</sup>, Saurabh Saxena<sup>†</sup>, Lala Li<sup>†</sup>, Jay Whang<sup>†</sup>, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho<sup>†</sup>, David J Fleet<sup>†</sup>, Mohammad Norouzi<sup>\*</sup>

{sahariac,williamchan,mnorouzi}@google.com {srbs,lala,jwhang,jonathanho,davidfleet}@google.com

> Google Research, Brain Team Toronto, Ontario, Canada

> > Sanjeev Raja

October 28, 2024





A photo of a Shiba Inu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda bike. It is wearing sunglasses and a beach hat.

dressed as a chef in a high end kitchen making dough. There is a painting of flowers on the wall behind him.



A cute corgi lives in a house made out of sushi.

A cute sloth holding a small treasure chest. A bright golden glow is coming from the chest.

#### Imagen: text-to-image diffusion model

#### **Key Features**

- Pretrained text encoders
- Pixel-space diffusion models
- Large guidance weights
- Hierarchical resolution generation



#### **Overall Pipeline**



#### **Key Features**

- Pretrained text encoders
- **Pixel-space** Diffusion models with text conditioning/cross-attention
- Large guidance weights
- Hierarchical resolution generation



#### **Text Encoders**



Two broad choices are explored

- Text encodings from image-text contrastive learning (e.g CLIP)
- Text encoding from LMs trained on text-only data (BERT, T5)



#### **Diffusion Models with Classifier-Free-Guidance**



• Standard, conditional denoising objective

 $\mathbb{E}_{\mathbf{x},\mathbf{c},\boldsymbol{\epsilon},t} \left[ w_t \| \hat{\mathbf{x}}_{\theta}(\alpha_t \mathbf{x} + \sigma_t \boldsymbol{\epsilon}, \mathbf{c}) - \mathbf{x} \|_2^2 \right]$ 

- UNet architecture
- Sampling performed with classifier-free guidance

$$\tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{z}_t, \mathbf{c}) = w \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_t, \mathbf{c}) + (1 - w) \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_t).$$



#### Large Guidance Weights

Well-known that large guidance weights produce better image/text alignment, but lead to saturation artifacts.

Claim: this is due to distribution shift during iterative denoising



(a) No thresholding.



#### **Static/Dynamic Thresholding**

**Static Thresholding:** clip predictions to [-1, 1]

**Dynamic Thresholding:** choose a percentile value in the prediction at each step (e.g. 0.995) and clip to that percentile value



#### **Cascaded Diffusion with Noise-Conditioned Augmentation**



- Efficient UNet architecture
- Two separate models to upsample 64x64 to 256x256 to 1024x1024
- **Cross-attention** with text embeddings
- Noise-conditioned augmentation



#### **Noise-Conditioned Augmentation - Training**

```
def train_step(
    x_lr: jnp.ndarray, x_hr: jnp.ndarray):
    # Add augmentation to the low-resolution image.
    aug_level = jnp.random.uniform(0.0, 1.0)
    x_lr = apply_aug(x_lr, aug_level)
```

# Diffusion forward process. t = jnp.random.uniform(0.0, 1.0) z\_t = forward\_process(x\_hr, t)

Optimize loss(x\_hr, nn(z\_t, x\_lr, t, aug\_level))

(a) Training using conditioning augmentation.



#### **Noise-Conditioned Augmentation - Sampling**

```
def sample(aug_level: float, x_lr: jnp.ndarray):
    # Add augmentation to the low-resolution image.
    x_lr = apply_aug(x_lr, aug_level)
```

```
for t in reversed(range(T)):
    x_hr_t = nn(z_t, x_lr, t, aug_level)
```

```
# Sampler step.
z_tm1 = sampler_step(x_hr_t, z_t, t)
z_t = z_tm1
return x_hr_t
```



#### **Efficient UNet Architecture**

- More parameters allocated to lower resolutions
- Scaling skip connections by 1/ sqrt(2)
- Reverse the order of downsampling/upsampling and convolutions



## **Training Details**

- Base diffusion model: 2B params
- Super-resolution models: 600M and 400M params
- **Training data:** Internal (460M image-text pairs) + Laion (400M image-text pairs)



#### **DrawBench Evaluation Suite**

| Category           | Description                                                             | Examples                                                                                                                     |
|--------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Colors             | Ability to generate objects with specified colors.                      | "A blue colored dog."<br>"A black apple and a green backpack."                                                               |
| Counting           | Ability to generate specified number of objects.                        | "Three cats and one dog sitting on the grass."<br>"Five cars on the street."                                                 |
| Conflicting        | Ability to generate conflicting interactions b/w objects.               | "A horse riding an astronaut."<br>"A panda making latte art."                                                                |
| DALL-E [53]        | Subset of challenging prompts from [53].                                | "A triangular purple flower pot."<br>"A cross-section view of a brain."                                                      |
| Description        | Ability to understand complex and long text prompts describing objects. | "A small vessel propelled on water by oars, sails, or an engine."<br>"A mechanical or electrical device for measuring time." |
| Marcus et al. [38] | Set of challenging prompts from [38].                                   | "A pear cut into seven pieces arranged in a ring."<br>"Paying for a quarter-sized pizza with a pizza-sized quarter."         |
| Misspellings       | Ability to understand misspelled prompts.                               | "Rbefraigerator."<br>"Tcennis rpacket."                                                                                      |
| Positional         | Ability to generate objects with specified spatial positioning.         | "A car on the left of a bus."<br>"A stop sign on the right of a refrigerator."                                               |
| Rare Words         | Ability to understand rare words <sup>3</sup> .                         | "Artophagous."<br>"Octothorpe."                                                                                              |
| Reddit             | Set of challenging prompts from DALLE-2 Reddit <sup>4</sup> .           | "A yellow and black bus cruising through the rainforest."<br>"A medieval painting of the wifi not working."                  |
| Text               | Ability to generate quoted text.                                        | "A storefront with 'Deep Learning' written on it."<br>"A sign that says 'Text to Image'."                                    |



## **Key Takeaways**



## **Comparison to other T2I Models**





#### **Text-Only Encodings are Surprisingly Good**





## **Text-Only Encodings are Surprisingly Good**

T5-XXL CLIP



(a) Alignment



### **Text-Only Encodings are Surprisingly Good**





#### Scaling Text Encoders is More Effective than Scaling the Diffusion Model



(a) Impact of encoder size.

(b) Impact of U-Net size.



#### **Dynamic Thresholding is Critical**



(a) Samples using static thresholding.

(b) Samples using dynamic thresholding (p = 99.5)



#### **Dynamic Thresholding is Critical**



#### (c) Impact of thresholding.



#### **Cross-attention is critical**



(a) Comparison between different text encoders.



#### Noise conditioning augmentation is critical





# Cascaded Diffusion + Noise Augmentation Enables Diversity





#### **Key Limitation: Face Generation**

"Our human evaluations found Imagen obtains significantly **higher preference rates** when evaluated on images that **do not portray people**, indicating a degradation in image fidelity."



## **Discussion - Frozen Language Models**

1. The paper demonstrates that large **frozen language models** trained only on

text perform better than multimodal models like CLIP for text encoding. Does this suggest that **pure language understanding** is more fundamental than visual-semantic alignment for text-to-image generation?

2. How might the design choice of **freezing the text encoder** affect the model's generalization capabilities?



#### **Discussion - Video Generation + Scaling**

1. Does this paradigm readily extend to **video generation**? Can we really capture

the evolution of temporal semantics just through text prompts?

2. For scaling to video/larger images, is latent or cascaded diffusion a more promising paradigm?



## **Thanks!**

