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A photo of a Shiba Inu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda
dressed as a chef in a high end kitchen making dough.

There is a painting of flowers on the wall behind him.

bike. It is wearing sunglasses and a beach hat.

A cute corgi lives in a house made out of sushi. A cute sloth holding a small treasure chest. A bright
golden glow is coming from the chest.
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Imagen: text-to-image
diffusion model

Key Features

Pretrained text encoders
Pixel-space diffusion models
Large guidance weights
Hierarchical resolution generation
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Diffusion Model
256 x 256 Image
Y
Super-Resolution

“A Golden Retriever dog wearing a blue

checkered beret and red dotted turtleneck.”

Key Features

:

Pretrained text encoders
Pixel-space Diffusion models with
text conditioning/cross-attention
Large guidance weights
Hierarchical resolution generation




Text Encoders

Text

A4

Frozen Text Encoder

Text Embedding
Y

Text-to-Image
Diffusion Model

64 x 64 Image
Y

Super-Resolution

Diffusiol n Model
256 x 256 Image
Y
per-Resoluti
Diffusion Model

1024 x 1024 Image

Berkeley

LINIVFRSITY OF CAI IFORNIA

“A Golden Retriever dog wearing a blue

checkered beret and red dotted turtleneck.”

Two broad choices are explored
e Text encodings from
image-text contrastive
learning (e.g CLIP)

e Text encoding from LMs
trained on text-only data
(BERT, T95)




Diffusion Models with Classifier-Free-Guidance

“A Golden R [ er dog wearing a blue

i" checkered ber d ed dotted turtleneck.” L
e Standard, conditional
R denoising objective
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e Sampling performed with
classifier-free guidance
S €9(2z¢,¢) = weg(ze,c) + (1 —w)eg(zy).
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Large Guidance Weights

Well-known that large guidance weights produce better image/text
alignment, but lead to saturation artifacts.

Claim: this is due to distribution shift during iterative denoising

(a) No thresholding.




Static/Dynamic Thresholding

Static Thresholding: clip predictions to [-1, 1]

Dynamic Thresholding: choose a percentile value in the prediction
at each step (e.g. 0.995) and clip to that percentile value




Cascaded Diffusion with Noise-Conditioned Augmentation

“A Golden Retriever dog wearing a blue

Text checkered beret and red dotted turtleneck.”
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e Efficient UNet architecture
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Noise-Conditioned Augmentation - Training

def train_step(
x_lr: jnp.ndarray, x_hr: jnp.ndarray):
# Add augmentation to the low-resolution image.
aug_level = jnp.random.uniform(0.0, 1.0)
x_lr = apply_aug(x_lr, aug_level)

# Diffusion forward process.
= jnp.random.uniform(0.0, 1.0)
z_t = forward_process(x_hr, t)

Optimize loss(x_hr, nn(z_t, x_lr, t, |aug_level]))

(a) Training using conditioning augmentation.
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Noise-Conditioned Augmentation - Sampling

def sample(pug_levell float, x_lr: jnp.ndarray):
# Add augmentation to the low-resolution image.
x_1lr = apply_aug(x_lr, aug_level)

for t in reversed(range(T)):
x_hr_t = nn(z_t, x_1lr, t, aug_level)

# Sampler step.
z_tml = sampler_step(x_hr_t, z_t, t)
z_t =2z _tml

return x_hr_t
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Efficient UNet Architecture

e More parameters allocated to lower resolutions

e Scaling skip connections by 1/ sqrt(2)

e Reverse the order of downsampling/upsampling and convolutions




Training Details

e Base diffusion model: 2B params

e Super-resolution models: 600M and 400M params

e Training data: Internal (460M image-text pairs) + Laion (400M
image-text pairs)




DrawBench Evaluation Suite

Category

Description

Examples

Colors

Ability to generate objects
with specified colors.

“A blue colored dog.”
“A black apple and a green backpack.”

Counting

Ability to generate specified
number of objects.

“Three cats and one dog sitting on the grass.”
“Five cars on the street.”

Conflicting

Ability to generate conflicting
interactions b/w objects.

“A horse riding an astronaut.”
“A panda making latte art.”

DALL-E [53]

Subset of challenging prompts
from [53].

“A triangular purple flower pot.”
“A cross-section view of a brain.”

Description

Ability to understand complex and long
text prompts describing objects.

“A small vessel propelled on water by oars, sails, or an engine.”
“A mechanical or electrical device for measuring time.”

Marcus et al. [38]

Set of challenging prompts
from [38].

“A pear cut into seven pieces arranged in a ring.”
“Paying for a quarter-sized pizza with a pizza-sized quarter.”

Misspellings

Ability to understand
misspelled prompts.

“Rbefraigerator.”
“Tcennis rpacket.”

Positional

Ability to generate objects with
specified spatial positioning.

“A car on the left of a bus.”
“A stop sign on the right of a refrigerator.”

Rare Words

Ability to understand rare words>.

“Artophagous.”
“Octothorpe.”

Reddit

Set of challenging prompts from
DALLE-2 Reddit".

“A yellow and black bus cruising through the rainforest.”
“A medieval painting of the wifi not working.”

Text

Ability to generate quoted text.

“A storefront with *Deep Learning’ written on it.”
“A sign that says ’Text to Image’.”
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Key Takeaways




Comparison to other T21 Models
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Text-Only Encodings are Surprisingly Good
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Text-Only Encodings are Surprisingly Good
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Text-Only Encodings are Surprisingly Good
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Scaling Text Encoders is More Effective than Scaling the Diffusion Model
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(a) Impact of encoder size. (b) Impact of U-Net size.
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Dynamic Thresholding is Critical
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Dynamic Thresholding is Critical
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(¢) Impact of thresholding.




Cross-attention is critical
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(a) Comparison between different text encoders.
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Noise conditioning augmentation is critical
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Cascaded Diffusion + Noise Augmentation Enables
Diversity

Input Unmodified Oil Painting INlustration
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Key Limitation: Face Generation

“Our human evaluations found Imagen obtains
significantly higher preference rates when
evaluated on images that do not portray people,
indicating a degradation in image fidelity.”




Discussion - Frozen Language Models

1.

The paper demonstrates that large frozen language models trained only on
text perform better than multimodal models like CLIP for text encoding. Does
this suggest that pure language understanding is more fundamental than
visual-semantic alignment for text-to-image generation?

How might the design choice of freezing the text encoder affect the model's

generalization capabilities?




Discussion - Video Generation + Scaling

1. Does this paradigm readily extend to video generation? Can we really capture

the evolution of temporal semantics just through text prompts?

2. For scaling to video/larger images, is latent or cascaded diffusion a more

promising paradigm?




Thanks!




